
A hybrid variable neighborhood search and simulated annealing algorithm
to estimate the three parameters of the Weibull distribution

Babak Abbasi a, Seyed Taghi Akhavan Niaki a,*, Mehrzad Abdi Khalife b, Yasser Faize b

a Department of Industrial Engineering, Sharif University of Technology, Tehran, Iran
b Department of Industrial Engineering, Qazvin Islamic Azad University, Qazvin, Iran

a r t i c l e i n f o

Keywords:
Weibull probability distribution
Variable neighborhood search
Simulated annealing
Parameter estimation
Maximum likelihood estimation

a b s t r a c t

The Weibull distribution plays an important role in failure distribution modeling of reliability research.
While there are three parameters in the general form of this distribution, for simplicity, one of its param-
eters is usually omitted and as a result, the others are estimated easily. However, due to its more flexi-
bility, when the general form of the Weibull distribution is of interest, the estimation procedure is not an
easy task anymore. For example, in the maximum likelihood estimation method, the likelihood function
that is formed for a three-parameter Weibull distribution is very hard to maximize. In this paper, a new
hybrid methodology based on a variable neighborhood search and a simulated annealing approach is pro-
posed to maximize the likelihood function of a three-parameter Weibull distribution. The performance of
the proposed methodology in terms of both the estimation accuracy and the required CPU time is then
evaluated and compared to the ones of an existing current method through a wide range of numerical
examples in which a sensitivity analysis is performed on the sample size. The results of the comparison
study show that while the proposed method provides accurate estimates as well as those of the existing
method, it requires significantly less CPU time.

� 2010 Elsevier Ltd. All rights reserved.

1. Introduction

It is well-known that the three-parameter Weibull distribution
family is extremely flexible and can fit an extremely wide range of
empirical observations very well (Nosal, Legge, & Krupa, 2000).
It exhibits a wide range of shapes for the density and hazard
functions that are suitable to model complex failure data sets.
Moreover, it is especially useful as a failure model in analyzing
the reliability of different types of systems.

The Weibull probability density and cumulative probability
functions are given in (1) and (2), respectively (Johnson & Kotz,
1970).
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where b, g, and m are the shape, scale, and location parameters,
respectively.

Successful application of Weibull distribution depends on hav-
ing reliable statistical estimates of the three parameters. Estimat-
ing the parameters of the three-parameter Weibull distribution

family is essentially a very difficult task and because of this diffi-
culty, despite its inherent flexibility, it is seldom used. Even the
estimation process of the popular two-parameter Weibull distribu-
tion does not offer close estimates and relies on numerical
procedures.

Nosal and Nosal (2003) used Monte Carlo simulation and array
processing language to investigate the performance of the gradient
random search minimization procedure for fitting a Weibull
distribution to a given data set using minimum Kolmogorov–
Smirnov distance approach. Abbasi, Eshragh-Jahromi, Arkat, and
Hosseinkouchack (2006) focused on likelihood method to estimate
the parameters of a three-parameter Weibull distribution and
employed a simulated annealing (SA) approach to maximize the
likelihood function. Simulated annealing is an algorithm that orig-
inates in material science engineering and originally introduced to
find the equilibrium configuration of a collection of atoms at a gi-
ven temperature (Metropolis, Rosenbluth, Rosenbluth, Teller, &
Teller, 1958). Later on, Kirkpatrick, Gerlatt, and Vecchi (1983) were
the first to use it as an algorithm to solve optimization problems.
This algorithm is a very effective and easy to implement method
that helps engineers find their way through hard optimization
problems.

In order to improve the performance of the SA algorithm of
Abbasi et al. (2006) and reach the solution in shorter amount of
computer CPU time, in this paper, a hybrid variable neighborhood
search and SA approach is proposed to maximize the likelihood
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function formed to estimate the parameters of a three-parameter
Weibull distribution.

The rest of the paper is organized as follows. In the next section
the notion of the maximum likelihood estimation (MLE) is briefly
introduced. Sections 3 and 4 give some brief information on the var-
iable neighborhood search (VNS) and SA algorithms. The proposed
hybrid methodology is first introduced in Section 5 and then its per-
formance is improved in Section 6. Three different problems are
used to investigate the performance of the proposed methodology
and to compare it with the one of Abbasi et al. (2006) method in Sec-
tion 7. Section 8 concludes the current work followed by introducing
some future research to those interested in parameter estimation of
a three-parameter Weibull distribution using meta-heuristics.

2. Parameter estimation using MLE

Estimation theory is a cornerstone in statistical analyses and sev-
eral techniques have been introduced to estimate parameters, of
which MLE, graphical procedure (Ross, 1994), moments (Lehman,
1962; White, 1969), artificial neural network (Abbasi, Rabelo, & Hos-
seinkouchack, 2008), and weighted least square method are some of
the most interesting ones (Bain & Antle, 1967; Usher, 1996).

For the MLE estimators that are asymptotically unbiased with
minimum variances (Dubey, 1965), let x1,x2, . . . ,xn be a random
sample of size n drawn, at random, from a probability density func-
tion, f ðx;~hÞof unknown parameter vector, ~h. Then the likelihood
function is as follows:

L ¼
Yn

i¼1

fxi
ðxi;~hÞ ð3Þ

where~h is a vector of size m representing the unknown parameters,
i.e. ~h ¼ ðh1; . . . ; hmÞ.

The goal is to find a vector, say~h0, that maximizes the so-called
likelihood function. To maximize L, we may equivalently use its
logarithm, Ln(L). Estimates are hence obtained through solving
the following equation set:

@
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For a Weibull distribution, the L function and its logarithm are
given in (5) and (6), where ~h ¼ ðb;g; mÞ.
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It is very difficult to maximize L(or Ln(L)) in (5) (or (6)) using
ordinary optimization techniques (Thoman, Bain, & Antle, 1969).
The gradient method being dependent on the partial derivations
of the objective function is not a good method to use here, because
it is very hard to evaluate the gradient terms and the objective
function itself at different points the algorithm needs. Also worth
noting, it is quite boring to derive the gradient of this complicated
objective function. Hence, some meta-heuristic search techniques
need to be employed.

3. General variable neighborhood search (VNS) algorithm

The basic idea of VNS is to explore different neighborhoods for
the solution space whenever a local optimum is reached by using a

local search method. The VNS is rapidly becoming a well-
established method in meta-heuristics (see for instance (Hansen,
Mladenovic, & Pérez-Brito, 2001)). VNS is based on a simple and
effective idea: a systematic change of neighborhood within a local
search algorithm (Garcia, Dionisio, Campos, & Marti, 2006).

The VNS algorithm works in two phases. In the first phase, a set
of neighborhood structures Nk, k = 1, . . . ,kmax, in which Nk is the kth

neighborhood, is first defined. Then, an initial solution x is found
and a stopping criterion is determined. In the second phase, given
the initial solution x, a random point x0 in Nk(x) is generated. Start-
ing from x0, a local search is then performed to generate x00. If x00 is
better than the incumbent best solution x, then x = x00, and the
search returns to N1. Otherwise, the search explores the next
neighborhood Nk+1. This is repeated until k = kmax.

In other words, after defining the neighborhood structure and a
stopping criterion, the phases involved in a VNS method are as
follows:

Phase 1: Generating initial solution Set k = 1.

Step 1. Find an initial solution x.
Step 2. Generate a random point x0 in Nk(x) neighborhood of the

current point. This step is called shaking.
Step 3. Find a local optimum from the point generated in the pre-

vious step. This step is called local search.
Step 4. If the new local optimum is better than the previous one, it

becomes the current solution; restart the process. Other-
wise increase k by one and go to step 1. This step is called
move or not (Duran & Toksarı, 2007).

Phase 2: Continuous VNS

The pseudo-code of the general continuous VNS is outlined in
Algorithm 1.

Algorithm 1. Pseudo-code of the continuous VNS algorithm

Select the set of neighborhood structures, Nk, k = 1, . . . ,kmax

and the array of random distributions types;
Choose an arbitrary initial point x 2 S
Set x ? x* and f(x) ? f*
Until the stopping condition is reached, repeat the following

steps;
Set k ? 1
Until kmax < k repeat the following steps

Shaking: Generate at random a point y 2 Nk(x*).
Use the local search method to find a local optimum y0.
Move or not: If f(y0) < f* (depending on the objective

function)
then set x ? y0, f(y0) ? f*and r ? 1
Else

Update r
End if
Set k + 1 ? k

End
End
When stopping condition is met, the point x* is an

approximate solution of the problem

A variety of useful applications of VNS can be found in Melian &
Mladenovic (2007).

The neighborhood of the VNS method is structured by
y0 ? y + dkr where d is the direction of the new neighborhood
and takes either 1 or �1, k is random number and ris the radius
of neighborhood generator of the VNS algorithm. Furthermore, in
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