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Shewhart C-chart is a widely accepted control chart for monitoring number of defects in a given process.
This chart is based on normal approximations. Normal assumption is, however, impractical in many cases
especially for count data. This assumption becomes stronger when correlation between characteristics
exists. In this article, we propose an optimal bivariate Poisson field chart to monitor two correlated char-
acteristics of count data for both industrial and non-industrial purposes. Our chart is based on optimiza-
tion of bivariate Poisson confidence interval and projection of bivariate Poisson data in Poisson field. The

performance of our proposed algorithm is presented using both real case study and simulations. The
experimental results demonstrate improved performances regarding visualization and false alarm rate.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

To deal with number of defects, C-chart is the most widely
used tool in statistical process control. There are many works that
have attempted to improve C-chart (Kittlitz, 2006; Quesenberry,
1991; Ryan, 1989; Ryan & Schwertman, 1997; Schwertman &
Ryan, 1997; Tsai, Lin, & Wu, 2006; Winterbottom, 1993). However,
when numbers of defects are very low such as in high quality pro-
cesses, traditional C-chart becomes an unsuitable tool. In this case,
instead of focusing on numbers of defects or fractions of noncon-
forming items, it is better to focus on numbers of conforming
items between the occurrences of nonconforming items, which
is generally referred to “interevent counts”. In Goh (1987), Goh
introduced CCC-chart which can be used for monitoring interevent
counts, by pointing out the effect of low fraction of nonconform-
ing (i.e where small probability of nonconforming occurred). In-
deed, in this case, normal approximation becomes out of reality.
By using actual numerical examples, Xie and Goh presented some
applications of CCC-chart, and suggested some methods for deci-
sion making in high yield processes (Xie & Goh, 1993, 1992). In
Nelson (1994), numbers of interevent counts are transformed by
simple power transformation from exponential distribution to
Weibull distribution. Then, normal approximation is applied to
construct control limits. In He, Xie, Goh, and Tsui (2006), authors
applied generalized Poisson distribution to model over-dispersed
data, and suggested the use of CCC-chart for high quality process
monitoring. Furthermore, in Kaminsky, Benneyan, Davis, and
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Burke (1992), He et al. (2006), the authors agreed that hypothesis
test or histogram should be conducted in initial state of construct-
ing the charts for high yield process. However, although monitor-
ing interevent counts is preferable, to observe various types of
defects simultaneously, multiple C-charts and CCC-charts are
needed.

Monitoring two or more types of correlated characteristics in
high quality processes still leave room for improvement. Lowery
and Montgomery pointed out that multivariate control charts per-
form better to signal out of control alarms than univariate charts,
since correlation between variables is taken into account (Lowery
& Montgomery, 1995). They also suggested that univariate charts
are only suitable for diagnosing process behavior. In Bersimis,
Psarakis, and Panaretos (2006), the authors pointed out four
conditions that every control chart needs to satisfy: “Is the process
in-control?”, “Is out-of control state pointed out?”, “Is relationship
between two or more variables taken into account?”, and “what is
the problem that out of-control signal actually tells?”. According to
Bersimis et al. (2006), there are many alternative charts which are
based on improving 2 and T? charts for continuous data. However,
for discrete variables, few multivariate attribute charts such as
Jolayemi (1999), Lu, Xie, Goh, and Lai (1998), Patel (1973), Skinner,
Montgomery, and Runger (2003) have been proposed. In Patel
(1973), Patel presented his multivariate control chart for both
binomial and Poisson data. For multiple defects, he presented mul-
tivariate Hotelling-like chart where time dependency between
variables is considered. However, this chart is not practical to apply
in nearly zero defect processes, since it considers normal assump-
tion, and requires complicated steps to be constructed (Akhavan &
Abbasi, 2006; Chiu & Kuo, 2008). In Lu et al. (1998), to deal with
multi-attribute variables, improved Mnp-chart is presented by
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considering correlation between characteristics. Not only this chart
shows improved results compared with univariate p-chart, but it is
also simple. Moreover, Jolayemi has proposed another enhanced
Mnp-chart for multiple independent discrete variables by propos-
ing simple designing of optimal Mnp-chart (Jolayemi, 1999). None-
theless, both Mnp-charts are not practical for high quality
processes, since they are constructed under normal assumption.
Skinner et al. (2003) have suggested to use generalized linear mod-
el (GLM) to construct attribute control chart for multiple counts
where input and output variables are measurable. By observing
the residuals, generalized linear model-based control charts are
more effective to monitor multi-count data than C-chart. Further-
more, the results show effective performance in the case of over-
dispersion. However, inputs and outputs are not measurable in
every process. Besides, GLM-based charts require multiple charts
to observe multivariate variables. In Akhavan and Abbasi (2006),
the authors suggested two transformations for multivariate Pois-
son distribution. For the first transformation, they applied bisec-
tion method to find the proper power of the root transformation
of each attribute characteristics. The second transformation is Nor-
mal distribution To Anything (NORTA) inverse transformation
method. After acquiring almost zero skew distribution from both
transformations, y? control chart is applied. According to Akhavan
and Abbasi (2006), NORTA inverse transformation method shows
robust performance when dealing with correlated multivariate
Poisson data. Moreover, it needs less complex steps than other
charts. In Chiu and Kuo (2008), the authors presented the use of
multivariate Poisson sum probability density function to define
the control limits of multivariate Poisson sum chart (MPSUM
chart). By their chart, monitoring multiple attribute characteristics
can be done in a single chart. However, in high quality processes,
numbers of defects are very low, and correlation between pairwis-
es of two characteristics is often crucial. According to our knowl-
edge, there are no works that have provided a chart which
effectively monitors correlated characteristics. Moreover, none of
the charts is mainly concerned with the illustration of how pairw-
ises of characteristic spread which can reflect process behavior.

In this article, we propose an optimal bivariate Poisson field
chart for monitoring two correlated characteristics of count data.
The basic concept is defining the optimal limits of bivariate
Poisson distribution and illustrating data in Poisson field. This
chart provides satisfied rate of false alarms, and illustrate original
values of two characteristics and changes of correlation between
them. In Section 2, the basic concepts of bivariate Poisson distri-
bution are briefly discussed. In Section 3, the basic principals of
an optimal bivariate Poisson field chart are introduced. Finally,
real case study and simulations are presented to illustrate the
effectiveness of our control chart in Section 4, and this paper is
concluded in Section 5.

2. Bivariate Poisson distribution and its estimation

Bivariate Poisson distribution (BP), which was firstly introduced
by Campbell (1934), is often used for modeling pairwises of corre-
lated count data. Let random variables X;,X;,X3 are unobserved
variables which follow independent Poisson distributions with
parameters /4q,2,73. Then, X=X;+X; and Y=X,+X3 are
observed pairwises which follows jointly a bivariate Poisson
distribution BP(44, 42, 43) with joint probability density function
(Holgate, 1964; Johnson, Kotz, & Balakrishnan, 1997; Kocherlakota
& Kocherlakota, 1992):
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where n is total number of samples. Moreover, the marginal distri-
bution of X and Y with means 4; + A3 and A, + /3 satisfies the fol-
lowing recurrence relations (Holgate, 1964):

XP(x,y) = 4P(x = 1,y) + 23P(x = 1,y — 1) 3)
YP(x,y) = Z2P(x,y = 1) + Z3P(x = 1,y = 1) (4)
For maximum likelihood estimation, if Eq. (1) is differentiated with
respect to parameters /i, 4, and /3, from recurrence relation in (3)

and (4), the differential-different equations are given by Holgate
(1964):
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Table 1

Probabilistic Poisson field. pyg.P1g:Po1:P11s- -+ are probabilities of each
pairwise on probabilistic Poisson field. rp.x and sp.x are numbers of rows and
columns, respectively, where all probabilities are equal to zero.

X y
0 1 2 3 Smax
0 Poo Po1 Po2 Po3 0
1 P1o P11 P12 P13 0
2 D20 P21 P2 P23 0
3 P30 P31 P32 P33 0
. . . . . 0
0
Tmax 0 0 0 0 0 0 0 0
Table 2

The schedule of events in Calit2 building from 07/24/05 to 11/05/05.

Dates of events Starting time Finishing time

(month/day/year) (hour:minute) (hour:minute)
7/26/2005 11:00 14:00
7/29/2005 8:00 11:00
8/2/2005 15:30 16:30
8/4/2005 16:30 17:30
8/5/2005 8:00 11:00
8/9/2005 11:00 14:00
8/9/2005 8:00 16:00
8/10/2005 8:00 16:00
8/12/2005 8:00 11:00
8/16/2005 11:00 14:00
8/18/2005 8:00 17:00
8/18/2005 18:00 20:30
8/19/2005 8:00 11:00
8/23/2005 11:00 14:00
08/26/05 08:00 11:00
08/30/05 16:00 18:00
09/01/05 14:00 16:30
09/15/05 08:30 10:00
09/21/05 09:00 14:00
09/22/05 14:00 14:30
10/03/05 15:30 17:00
10/04/05 12:00 15:00
10/07/05 09:00 10:30
10/10/05 16:30 19:00
10/14/05 09:00 10:30
10/19/05 22:00 23:30
10/21/05 09:00 10:30
10/23/05 21:00 22:30
10/24/05 08:00 12:00
10/24/05 16:00 21:00
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