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a b s t r a c t

Validation is an important issue in the development and application of Bayesian Belief Network (BBN)
models, especially when the outcome of the model cannot be directly observed. Despite this, few frame-
works for validating BBNs have been proposed and fewer have been applied to substantive real-world
problems. In this paper we adopt the approach by Pitchforth and Mengersen (2013), which includes nine
validation tests that each focus on the structure, discretisation, parameterisation and behaviour of the
BBNs included in the case study.

We describe the process and result of implementing a validation framework on a model of a real airport
terminal system with particular reference to its effectiveness in producing a valid model that can be used
and understood by operational decision makers. In applying the proposed validation framework we dem-
onstrate the overall validity of the Inbound Passenger Facilitation Model as well as the effectiveness of
the validity framework itself.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Expert-informed Bayesian Networks, or Bayesian Belief Net-
works (BBN) (Pearl, 1987) are a popular systems modelling ap-
proach in cases where the behaviour of a system is not entirely
known, or is difficult to observe. In such cases, validation presents
a challenge that cannot be answered using the commonly used
goodness-of-fit tests, such as AIC, BIC or DIC (Gelman & Hill,
2007; Riedwyl, 1967). In particular, such tests require an objective
and directly observed output that can be used to train and then test
the model parameters. Such an arrangement is useful in areas
where the system output can be observed, but the range of inter-
actions producing such results are too complex to be thought about
all at once, such as the technical performance of an information
system (Moullec et al., 2013) or the financial performance of some
organisation (Guo, Yeh, Wang, & Lin, 2012).

However, in many cases BBNs are used precisely because no
such output is possible to collect, such as in ecology, risk analysis
and social behavioural studies (Grover, 2013). In other cases, such
as in airport passenger flows, there is a theoretically observable
output but gaining such data is expensive or difficult, making BBNs
a much more practical and realistic alternative for describing and
predicting the behaviour of the system. This is similar to identify-
ing the effect of a latent variable in the model (see Yet, Perkins,
Fenton, Tai, & Marsh (2013) for methods of achieving this), but in
these cases the latent variable is the output of the model. In such

domains there is no known method of determining overall validity
as there is no ground truth data against which model outputs can
be compared.

In these cases the question of validation is often only addressed
in passing through expert self-checking or otherwise is answered
with an incomplete view of validity constructs. For example,
Scholten, Scheidegger, Reichert, and Maurer (2013) and Stark, Roth,
and Farry (2013) both use very sophisticated approaches to using
expert elicitation in their models, but are limited to validating
the results using expert opinion either through direct interview
or expert-created scenarios. In such cases it is not useful to provide
accurate validity diagnostics, as the test data cannot be seen as
ground truth making the diagnostic misleading and may lead to
criteria contamination, or self confirmation (Brogden & Taylor,
1950). In their model of IT project success, Gingnell, Franke,
Lagerström, Ericsson, and Lilliesköld (2014) focus validation at-
tempts only on defending the assumptions of the Noisy OR-gates
used in their elicitation to reduce expert workload, which provides
an incomplete assessment of model validity. This method of
validating the model lends weight to the approach of building
confidence in validity incrementally rather than a binary judgment
using a single diagnostic measure based on comparison to ground
truth data, however it is incomplete from the perspective of
Pitchforth and Mengersen (2013) framework. Another approach
is to generate synthetic data and compare the model output
against this (Aquaro et al., 2010), although this approach also
focuses solely on the predictive validity of the model and is
essentially equivalent to a Qualitative Features Analysis.
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Almost no work has been conducted on frameworks to address
validation in expert elicited models when there is no ground truth
dataset available, despite validity issues being raised by critics as
an issue with using experts for BBN modelling (Drescher et al.,
2013). However, for a model to be successfully implemented into
everyday decision scenarios the user must be confident that they
are receiving an accurate representation of the system they are
controlling. If model developers cannot reach some assessment of
the validity of their work it is most likely that decision-makers will
ignore model results and continue working using traditional meth-
ods. In some cases this simply results in non-optimal system oper-
ations, however in the case of critical infrastructure the result can
be the development and maintenance of unreasonably high risk
protocols.

In response to the lack of methods for validating BN models
when no output data are available, a framework of validity tests
was introduced by Pitchforth and Mengersen (2013) for practical
application to expert-elicited and expert-informed BBNs. These
tests were drawn from a variety of disciplines such as statistics,
psychology and system dynamics to give helpful guidance on the
strength of a model’s validity where no ground truth data are avail-
able against which model outputs can be tested. However, the
framework is still only theoretical and has not been established
as practically effective through application to a working model of
a real system.

Here we apply that framework to the Inbound Passenger Facil-
itation Model (IPFM), a model designed to represent the inbound
passenger facilitation system at an Australian international airport.
This is the first application of the framework by Pitchforth and
Mengersen (2013) to a working BN model that cannot be trained
and tested using directly observed output data, and has been used
to demonstrate the validity of the model to airport stakeholders. In
order to achieve this many tests described in this paper have been
further developed from the original paper describing the
framework.

In using the framework to validate a working airport terminal
model, we aim to first demonstrate that the framework can be use-
fully applied to models with little or no observable output data and
how this can be achieved. Our second aim is to demonstrate that
by being subjected to the validity tests in the framework the IPFM
has become a more valid representation of the real-world system
than prior to their application.

1.1. Background

The IPFM is a model of airport terminal behaviour with a fo-
cus on inbound passenger facilitation times. Initial model devel-
opment was in response to work by Hargreaves (2008) that
took a deterministic approach to developing a measurement
framework (as opposed to a model) for this system. While their
work was comprehensive, the lack of a coherent holistic model
of the system in question meant the results of the work were
never applied in practical operations management. In addition,
the sampling strategy required to quantify their metric frame-
work proved infeasible. While limited samples are taken from
the airport throughout the year, the rarity of such sampling along
with the acknowledged error of the measurements means that
such samples are unlikely to be useful for model validation pur-
poses. In this case, using expert opinion to support observational
data is an important step in creating reliable and valid systems
models.

At the point of conception there were a range of theoretical
goals set out for the model, such as integrating disparate datasets
that were being maintained by numerous stakeholders, capturing
the knowledge of experts and predicting the performance of the
system in different scenarios. After a search of existing airport

terminal performance models a BBN was identified as a suitable
modelling tool for achieving these goals. These goals were gradu-
ally refined over the course of the project through interviews and
workshops held at each iteration of model development.

Once initial reporting has been completed it became apparent
that significant validation testing would be required before the
model could be approved for use in managing critical infrastruc-
ture. However, much of the model was unable to be tested
against objective data because it was too expensive to collect
so had been quantified using expert elicitation. This led to an
exploration of similar situations in which no directly observable
outcome is possible, and ultimately to the development of the
framework outlined in Pitchforth and Mengersen (2013) and
applied in this paper. For approval to be used in daily operations,
these tests of validity needed to be usefully applied and
communicated to stakeholders in order to build their confidence
that the model is a valid representation of inbound passenger
processing.

1.1.1. Bayesian Belief Networks
BBNs are a member of the family of conditional joint probability

models known as Bayesian Networks (BN) (Pearl, 1987). These
models express systems in terms of the likelihood of each factor
(or node) existing in a given state based on the direction and
strength of influence from other nodes. There are three main fea-
tures of a BBN before it is used for simulation; structure, discreti-
sation and parameterisation. In some cases researchers may
obviate discretisation by using continuous nodes (John & Langley,
1995), but this is rare in practical applications, and continuous
nodes are usually used in conjunction with discrete nodes (Aguilera,
Fernández, Fernández, Rumí, & Salmerón, 2011).

In the process of creating a BBN model, the researcher must first
define the domain and scope of the model and arrive at some
understanding of the structure of the network. If full data are
available then these can be used directly to learn the network
structure algorithmically. Alternatively, Principal Component
Analysis (Joliffe, 2002) can be used to reduce the dimensionality
of the data before running learning algorithms, which speeds the
learning process in time-critical applications. For expert-elicited
and expert-informed networks the number and subject of
nodes is defined by the researcher through literature review and
expert consultation, as is the number and direction of arcs between
nodes.

If discrete nodes are created from continuous assessments, the
node must be discretised before parameterisation. Deciding upon
discretisation thresholds is a difficult process, as the resulting out-
put of the network can be highly sensitive to this choice. There is a
significant amount of research on discretising nodes from data sets
in the case of Learning Bayesian Networks (Monti & Cooper, 2013),
however very little has been explored in the case of expert-elicited
or expert-informed BBNs (Uusitalo, 2007).

The final stage in model creation is to set prior parameters for
each node through a conditional probability table (CPT) that spec-
ifies the likelihood of a node’s state conditional upon the states of
its parent nodes. It is this parameterisation through CPTs that pro-
vides the simulation capabilities for BNs generally.

From this process there are seen to be four areas affecting
uncertainty in the validity of the BBN model:

1. Structure: The nodes included in the model, and the number
and direction of links between nodes.

2. Discretisation: The way the state space has been divided within
nodes.

3. Parameterisation: The conditional probabilities associated with
node states.

4. Behaviour: The output of the model under interrogation.
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