
Object clustering and recognition using multi-finite mixtures for
semantic classes and hierarchy modeling

Taoufik Bdiri a, Nizar Bouguila b,⇑, Djemel Ziou c

a Department of Electrical and Computer Engineering, Concordia University, Montreal, QC H3G 1T7, Canada
b The Concordia Institute for Information Systems Engineering (CIISE), Concordia University, Montreal, QC H3G 1T7, Canada
c DI, Faculté des Sciences, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada

a r t i c l e i n f o

Keywords:
Data clustering
Mixture models
Hierarchical models
Semantic clustering
Inverted Dirichlet distribution
Maximum likelihood
Visual objects

a b s t r a c t

Model-based approaches have become important tools to model data and infer knowledge. Such
approaches are often used for clustering and object recognition which are crucial steps in many applica-
tions, including but not limited to, recommendation systems, search engines, cyber security, surveillance
and object tracking. Many of these applications have the urgent need to reduce the semantic gap of data
representation between the system level and the human being understandable level. Indeed, the low
level features extracted to represent a given object can be confusing to machines which cannot differen-
tiate between very similar objects trivially distinguishable by human beings (e.g. apple vs. tomato). In
this paper, we propose a novel hierarchical methodology for data representation using a hierarchical mix-
ture model. The proposed approach allows to model a given object class by a set of modes deduced by the
system and grouped according to a labeled training data representing the human level semantic. We have
used the inverted Dirichlet distribution to build our statistical framework. The proposed approach has
been validated using both synthetic data and a challenging application namely visual object clustering
and recognition. The presented model is shown to have a flexible hierarchy that can be changed on
the fly within costless computational time.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Available digital data has increased significantly in the recent
years with the intensive use of technological devices and Internet.
Due to the huge amount of such heterogeneous data, an urgent
need has been triggered to automate its analysis and modeling
for different purposes and applications. One challenging crucial as-
pect in data analysis is clustering, a form of unsupervised learning,
which is defined as the process of assigning observations sharing
similar characteristics to subgroups, such that their heterogeneity
is minimized within a given subgroup and maximized between
the subgroups. Such an assignment is not trivial especially when
we deal with high dimensional data. Indeed, it has been shown
that clustering is considered as one of the most important aspects
of artificial intelligence and data mining (Jain, Murty, & Flynn,
1999; Fisher, 1996). Given a data set that we need to extract
knowledge from it, the ultimate goal is to construct consistent high
quality clusters using a computationally inexpensive way. Statisti-
cal-based approaches for data clustering have recently become an
interesting and attractive research domain with the advancement

of computational power that enables researchers to implement
complex algorithms and deploy them in real time applications.
One major approach based on statistics is model-based clustering
using finite mixture models. A finite mixture model can be defined
as a weighted sum of probability distributions where each distri-
bution represents the population of a given subgroup. The authors
in Fraley and Raftery (2002) traced the use of finite mixture models
back to the 1960s and 1970s, citing amongst others, works in Ed-
wards and Cavalli-Sforza (1965), Day (1969) and Binder (1978).
Although their use backs at least as far as 1963, it is only in the re-
cent decades that mixture models applications started to cover
many fields including, but not limited to, digital image processing
and computer vision (Sefidpour & Bouguila, 2012; Stauffer &
Grimson, 2000; Allili, Ziou, Bouguila, & Boutemedjet, 2010), social
networks (Couronne, Stoica, & Beuscart, 2010; Handcock, Raftery,
& Tantrum, 2007; Morinaga & Yamanishi, 2004), medicine
(Koestler et al., 2010; Tao, Cheng, & Basu, 2010; Neelon, Swamy,
Burgette, & Miranda, 2011; Schlattmann, 2009; Rattanasiri,
Böhning, Rojanavipart, & Athipanyakom, 2004), and bioinformatics
(Kim, Cho, & Kim, 2010; Meinicke, Ahauer, & Lingner, 2011; Ji, Wu,
Liu, Wang, & Coombes, 2005).

The consideration of mixture models is practical for many
applications. In many cases, however, the complexity of the
observed data may render the use of one single distribution to
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represent a given class insufficient for inference. Many techniques
have been proposed to select the best number of mixture compo-
nents that best represents the data. Examples include Bayesian
inference criterion (BIC) (Schwarz, 1978), minimum description
length (MDL) (Rissanen, 1999) and minimum message length
(MML) (Wallace, 2005) criteria. These criteria are mainly used in
unsupervised algorithms where the system handles data modeling
without any intervention during the learning process. This ap-
proach has a serious drawback in many applications as the seman-
tic meaning of the mixture modes in the selected model does not
necessarily fit with a human comprehensible semantic. Consider
for instance an object recognition application where the system
has to recognize different objects according to the user need. An
MML, BIC or MDL criterion would in most cases consider classes
with important visual similarities (e.g., apple and tomato), as being
the classes that should be represented by a single mode in the mix-
ture. This is not always the case in real applications, where a hu-
man being or an application would need to differentiate between
different classes even when they have close visual properties and
similarities, thus we talk here about a semantic meaning of the
mixture modes. Therefore, the gap between the system representa-
tion and the human representation of data is still high when using
these methods. An eventual solution is to form a hierarchical mod-
el based on some ontology as in Ziou, Hamri, and Boutemedjet
(2009), Bakhtiari and Bouguila (2010), Bakhtiari and Bouguila
(2011) and Bakhtiari and Bouguila (2012) where the data is
grouped into clusters and sub clusters (i.e., tree-structured cluster-
ing).Yet, this approach still form the model using the visual simi-
larities and groups data according to the system choice.
Furthermore, since the model is based on estimating the model’s
parameters as the algorithm goes deeper in the hierarchy (the dis-
tributions’ parameters of the children clusters depend on the
parameters of the parents clusters), when changing the hierarchi-
cal model, a whole new estimation should take place, which in-
creases the computational cost. The user intervention to build a
hierarchical mixture has been introduced in Bishop and Tipping
(1998) which developed the concept of hierarchical visualization
where the construction of the hierarchical tree proceeds top-down,
and for each level, the user decides on the suitable number of mod-
els to fit at the next level down. Indeed this interaction, may serve
to have an optimal number of clusters for each level according to
the user, but it does not permit the user to define any semantic
meaning to the clusters or group the clusters as he/she needs.
Moreover, the user cannot define any ontological model to the
data, and there is a new estimation of the parameters to be calcu-
lated at each level when the model goes deeper in the tree.

In this work, we present a novel way to model data and assign a
semantic meaning to clusters according to the user needs which
can reduce significantly the gap between the system representa-
tion and the user level representation. We tackle the challenging
problem of object clustering, and recognition of new unseen data
in terms of affectation to the appropriate clusters forming the ob-
ject class. Naturally, the choice of the distribution forming the mix-
ture model is crucial in terms of clustering efficiency and accuracy
of the classification of unseen data. Indeed, many works have fo-
cused on Gaussian mixture models (GMM) to build their applica-
tions such as in Permuter, Francos, and Jermyn (2003), Zivkovic
(2004), Yang and Ahuja (1999) and Weiling, Lei, and Yang (2010),
but recent researches have shown that it is not appropriate to al-
ways assume that data follows a normal distribution. For instance,
the works in Boutemedjet, Bouguila, and Ziou (2009), Bouguila,
Ziou, and Vaillancourt (2004), Bouguila and Ziou (2006), Bouguila,
Ziou, and Hammoud (2009) have considered the Dirichlet and gen-
eralized Dirichlet mixture models, to model proportional data,
which have been shown to outperform the GMM. We have devel-
oped in our previous work the inverted Dirichlet mixture model

(IDMM) which has better capabilities than the GMM when model-
ing positive data that occurs naturally in many real applications
(Bdiri & Bouguila, 2012; Bdiri & Bouguila, 2011). Hence, we pro-
pose our new methodology using IDMM, although it is noteworthy
to bear in mind than any other distribution can be used as the pre-
sented framework is general.

The rest of this paper is organized as follows. In Section 2, we
present our statistical framework by considering a two-levels hier-
archy for ease of representation and understanding of the general
methodology. In Section 3, we propose a detailed approach to learn
the proposed statistical model. In Section 4, we propose a general-
ization of our modeling framework to cover many hierarchical lev-
els. Section 5 is devoted to present the experimental results using
both synthetic data and a real-life application concerning object
recognition. Finally, Section 6 gives a conclusion and future per-
spectives for research.

2. Statistical framework: the model

We propose to develop a statistical framework that can model
data in a hierarchical fashion. The attribution of a semantic mean-
ing to the model is discussed in sub Section 5.2.1. In this section,
we consider a two-levels hierarchy where we have a set of super
classes, composed each, of a set of classes. The generalization of
the model is discussed in Section 4. Let us consider a set X of N
D-dimensional vectors, such that X ¼ ð~X1;~X2; . . . ;~XNÞ. Let M de-
notes the number of different super classes and Kj the number of
classes forming the super class j. We assume that X is controlled
by a mixture of mixtures, such that each super class j is represented
by a mixture of Kj components and the parent mixture is composed
of M mixtures representing the super classes. Thus, we consider two
views or levels for the statistical model. The first view focuses on
the super classes and the second one zooms on the classes (see
Fig. 1). We suppose that the vectors follow a common but un-
known probability density function pð~XnjNÞ, where N is the set of
its parameters. Let Z ¼ f~Z1;~Z2; . . . ;~ZNg denotes the missing group
indicator, where ~Zn ¼ ðzn1; zn2; . . . ; znMÞ is the label of ~Xn, such that
znj 2 {0,1},

PM
j¼1znj ¼ 1 and znj is equal to one if ~Xn belongs to super

class j and zero, otherwise. Then, the distribution of ~Xn given the
super class label ~Zn is:

pð~Xnj~Zn;HÞ ¼
YM
j¼1

pð~XnjhjÞ
znj ð1Þ

where H = {h1,h2, . . . ,hM} and hj is the set of parameters of the super
class j. In practice, pð~XnjHÞ can be obtained by marginalizing the
complete likelihood pð~Xn;~ZnjHÞ over the hidden variables. We de-
fine the prior distribution of ~Zn as follows:

pð~Znj~pÞ ¼
YM
j¼1

pznj

j ð2Þ

where ~p ¼ ðp1; . . . ;pMÞ;pj > 0 and
PM

j¼1pj ¼ 1, then we have:

pð~Xn;~ZnjH; ~pÞ ¼ pð~Xnj~Zn;HÞPð~Znj~pÞ ¼
YM
j¼1

ðpð~XnjhjÞpjÞ
znj ð3Þ

We proceed by the marginalization of Eq. (3) over the hidden vari-
able (see Appendix A), so the first level of our mixture for a given
vector ~Xn can be written as follows:

pð~XnjH; ~pÞ ¼
XM

j¼1

pð~XnjhjÞpj ð4Þ

Thus, according to the previous equation, the set of parameters N
corresponding to the first level is N ¼ ðH; ~pÞ. When we examine
the second level which considers the classes, given that ~Xn is
generated from the mixture j, we suppose that it is also generated
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