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a b s t r a c t

In this paper, a new strategy based on the fusion of different Support Vector Machines (SVM) is proposed
in order to reduce noise effect in bearing fault diagnosis systems. Each SVM classifier is designed to deal
with a specific noise configuration and, when combined together – by means of the Iterative Boolean
Combination (IBC) technique – they provide high robustness to different noise-to-signal ratio. In order
to produce a high amount of vibration signals, considering different defect dimensions and noise levels,
the BEAring Toolbox (BEAT) is employed in this work. The experiments indicate that the proposed strat-
egy can significantly reduce the error rates, even in the presence of very noisy signals.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Although the visual inspection of time- and frequency-domain
features of measured signals is adequate for identifying machinery
faults, there is a need for a reliable, fast and automated procedure
of diagnosis (Samanta et al., 2004). Due to the increasing demands
for greater product quality and variability, short product life-cy-
cles, reduced cost, and global competition, automatic machine con-
dition monitoring (MCM) has been gaining importance in the
manufacturing industry (Liang et al., 2004). MCM systems allow
for a significant reduction in the machinery maintenance costs,
and, most importantly, the early detection of potential faults
(Guo et al., 2005). Mass unbalance, rotor rub, shaft misalignment,
gear failures and bearing defects are exemples of faults that may
lead to the machine’s breakdown (Samanta et al., 2004).

Besides the detection of the early occurence and seriousness of
a fault, MCM systems may also be designed to identify the compo-
nents that are deteriorating, and to estimate the time interval dur-
ing which the monitored equipment can still operate before failure
(Lazzerini and Volpi, 2011). These systems continuously measure
and interpret signals (e.g., vibration, acoustic emission, infrared
thermography, etc.), that provide useful information for identifying
the presence of faulty symptoms.

The focus of this work is in rotating machines, which usually
operate by means of bearings. Since they are the place where the
basic dynamic loads and forces are applied, bearings represent a
critical component. A defective bearing causes malfunction and
may even lead to catastrophic failure of the machinery (Tandon
and Choudhury, 1999). Vibration analysis has been the most em-

ployed methodology for detecting bearings defects (Thomas,
2011). Each time a rolling element passes over a defect, an impulse
of vibration is generated. On the other hand, if the machine is oper-
ating properly, vibration amplitude is small and constant (Alguin-
digue et al., 1993). Another methodology successfully applied to
this problem has been the acoustic emission (AE) (Elmaleeh and
Saad, 2008; Tandon and Choudhury, 1999).

Automatic bearing fault diagnosis can be viewed as a pattern
recognition problem, and several systems have been designed
using well-known classification techniques, such as Artificial Neu-
ral Networks (ANNs) and Support Vector Machines (SVM). When
these systems employ real vibration data obtained from bearings
artificially damaged, they have to cope with a very limited amount
of samples. Furthermore, with exception of a few works (Guo et al.,
2005; Jack and Nandi, 2002) – which consider a validation set, be-
sides the training and test sets –, the choice of the system’s param-
eters, including the feature selection step, too often has been done
by using the same datasets employed to train/test the classifiers.
This may lead to biased classifiers that will hardly be able to gen-
eralize on new data. Another important aspect that has been little
investigated in the literature is the presence of noise, which dis-
turbs the vibration signals, and how this affects the identification
of bearing defects (Lazzerini and Volpi, 2011).

In this paper, a classification system based on the fusion of dif-
ferent SVMs is proposed to detect early defects on bearings in the
presence of high noise levels. Each SVM classifier is designed to
deal with a specific noise configuration and, when combined to-
gether – by using the Iterative Boolean Combination (IBC) tech-
nique (Khreich et al., 2010) – they provide high robustness to
different noise-to-signal ratio.

In order to produce a high amount of bearing vibration signals,
considering different defect dimensions and noise levels, the BEAr-
ing Toolbox (BEAT) is employed in this work. BEAT is dedicated to
the simulation of the dynamic behaviour of rotating ball bearings
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in the presence of localized defects, and it was shown to provide
realistic results, similar to those produced by a sensor during
experimental measurements (Sassi et al., 2007).

This paper is organized as follows. Section 2 presents the state-
of-the-art in automatic bearing fault diagnosis. Section 3 describes
the experimental methodology, including datasets, measures used
to evaluate the system performance, and the IBC technique. Finally,
the experiments are presented and discussed in Section 4.

2. The state-of-the-art in automatic bearing fault diagnosis

Fig. 1 illustrates the general structure of a bearing. It is com-
posed of six components: housing, outer race (OR), inner race
(IR), rolling elements (RE) (i.e., rollers or balls), cage and shaft
(Guo et al., 2005). As previously mentioned, the interaction of de-
fects in rolling element bearings produces impulses of vibration. As
these shocks excite the natural frequencies of the bearing ele-
ments, the analysis of the vibration signal in the frequency-do-
main, by means of the Fast Fourrier Transform (FFT), has been an
effective method for predicting the health condition of bearings
(Tandon and Choudhury, 1999).

Each defective bearing component produces frequencies, which
allow for localizing different defects occurring simultaneously.
BPFO (Ball Pass Frequency on an Outer race defect), BPFI (Ball Pass
Frequency on an Inner race defect), FTF (Fundamental Train Fre-
quency) and BSF (Ball Spin Frequency) – as well as their harmonics,
modulating frequencies, and envelopes – are examples of fre-
quency-domain indicators, calculated from kinematic consider-
ations – that is, the geometry of the bearing and its rotational
speed (Sassi et al., 2007).

It is worth noting that the shock amplitude is directly related to
the defect dimension: the bigger the defect, the bigger the shock.

Fig. 2 presents an example of a defect located in the outer race
and its corresponding vibration signal.

Not only frequency- but also time-domain indicators have been
widely employed as input features to train a bearing fault diagno-
sis classifier. Time-domain indicators are adimensional, and allow
for representing the vibration signal through a single scalar value.
For instance, peak is the maximum amplitude value of the vibra-
tion signal, RMS (Root Mean Square) represents the effective value
(magnitude) of the vibration signal and Kurtosis describes the
impulsive shape of the vibration signal. Table 1 presents the effec-
tiveness (advantages and disadvantages) of some time-domain
indicators in describing the presence (or absence) of faulty symp-
toms (Kankar et al., 2011; Sassi et al., 2008; Tandon and Choudhu-
ry, 1999).

A bearing fault diagnosis system may be designed to provide
different levels of information about the defect (s). The first and
simpler issue investigated in the literature is the detection of the
presence or absence of a defect (Jack and Nandi, 2002; Samanta
et al., 2004). The second issue is the determination of the defect
location, which may occur in different components of a bearing
(Alguindigue et al., 1993; Bhavaraju et al., 2010). Often, the type
of defect is considered along with the defect location. For instance,
some authors consider the following classes: sandblasting of IR/OR,
indentation on the roll, unbalanced cage (Lazzerini and Volpi,
2011; Volpi et al., 2010), crack on IR/OR, spall on IR/OR, spalls on
rollers (Widodo et al., 2009), generalized fault of two balls (Alguin-
digue et al., 1993), etc.

Finally, the severity of a bearing defect is the last and perhaps
the most difficult information to be predicted. Through this infor-
mation, it may be possible to estimate the duration during which
the equipment can still operate safely. In the literature, this issue
has been partially investigated, by associating a different class to
each defect dimension (Cococcioni et al., 2009a, 2009b; Widodo
et al., 2009). Cococcioni et al. (2009a), for example, have employed
three classes for describing the seriousness of an ‘‘indentation on
the roll’’, namely, light (450lm), medium (1.1 mm) and high
(1.29 mm). The drawback of this strategy is that other defect
dimensions are not considered by the classifier. A more suitable
solution would be the estimation of defect dimensions as a regres-
sion problem.

Table 2 presents a summary of different systems reported in the
literature, with their respective employed classification tech-
niques, types of signal, descriptors (features), types of defects
and datasets. It is important to mention that the bearing defects
may be categorized as distributed or local. Distributed defects
are due to unavoidable manufacting imperfections, such as surface
roughness, waviness, misaligned races and off-size rolling ele-
ments (Sassi et al., 2007), whereas localized defects include cracks,

Fig. 1. Typical roller bearing, showing different component parts. Adapted from
Jack and Nandi (2002).

Fig. 2. Example of a hypothetical defect located in the rolling element (a) and its corresponding shock impulses (b), where FTF is the Fundamental Train Frequency (or cage
frequency). Adapted from Sassi et al. (2007).
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