
A tool for addressing the ramification problem in spatial databases:
A solution implemented in SQL

Nikos Papadakis *, Yannis Christodoulou
Department of Sciences, Techological Educational Institute of Crete, Greece

a r t i c l e i n f o

Keywords:
Ramification problem
Spatial databases
Common sense reasoning
Knowledge representation and reasoning
Software engineering

a b s t r a c t

In this paper, we study the ramification problem in the setting of spatial databases. Standard solutions
from the literature on reasoning about action are inadequate because they cannot capture integrity con-
straints in spatial data. In this paper, we provide a solution to the ramification problem based on situation
calculus. We present a tool that connects the theoretical results to practical considerations, by producing
the appropriate SQL commands in order to address the ramification problem in spatial databases.

� 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Spatial databases can be mainly implemented in Geographic
and Information Systems for the representation-modeling of space
and the representation of objects in that space (Chen & Gong, 1998;
Oracle, 2003). They can also be implemented in multimedia (video
editing), networks (representation of networks, hubs).

The various types of geometrical shapes, according to their
complexity, do not allow for an immediate and flexible resolution
of problems. The operators, in order to be able to provide some
comparable properties in these shapes, introduce the concept of
the bounding box. The bounding box encircles the geometrical
shape in a box, whose area is the less possible one, thus providing
an easier way to handle shapes. The role of the bounding box and
the use of operators like window query, point query, intersection
query, enclosure query, containment query and adjacent query
are very important tools for the handling of shapes (Kiiveri, 1997).

The use of spatial operators in a spatial database can be a diffi-
cult process both in updating and finding data. This is due to the
complexity a shape may have, but also because of the possible
changes that may occur. Under these conditions, we can classify
the operator methods in three broad categories: the one-dimen-
sional access methods, area access methods and the point access
methods. The multi-dimensional access methods mentioned need
alternative ways to access data, so as to enable the comparison
of geometrical representations in space between k-dimensional
and one-dimensional representations.

The following sections will refer to cases of inconsistency that
may occur during an update of the spatial data. In particular, we

assume that spatial data is stored as a sequence of points (each
one adjacent with its next) in the two-dimensional space and that
a change in a shape occurs when the coordinates of a point change.
In the case where such a change takes place, there is the possibility
that an overlap may arise between two geometrical shapes. This is
an inconsistency that is faced in this paper. More specifically, we
propose an algorithm, which produces SQL transaction code. When
a change in the Database takes place and an inconsistency arises,
this code is responsible to change the adjacent geometrical shapes,
so as the overlap between them is removed. The change of the first
shape is the direct effect of the execution of a transaction, while
the change of the rest shapes is the indirect effect of the execution
of a transaction and takes place to maintain the Not-Overlap con-
straint. The description of the indirect effects of a transaction,
when integrity constraints exist, is the ramification problem.

The guarantee of consistency of data that is stored in a database
is very important and difficult problem. The consistency of data is
determined by the satisfaction of the integrity constraints (Andrea
Rodriguez, 2004; Kalum, Li, & Wijeratne, 2006; Kiiveri, 1997; Ora-
cle, 2003; Scott, 1994) in the different database states (situations).
A database state is considered valid (consistent) only when all
integrity constraints are satisfied. When a transaction is executed,
the context of the database is modified. In the new situation
(which includes the direct effects of the transactions) the database
may be inconsistent because some integrity constraints are not
satisfied. Thus, it is necessary to produce some additional effects
(indirect effects) to satisfy the integrity constraints. We can as-
sume that an atomic transaction is an action.

In this context, the ramification problem (McCarthy & Hayes,
1969) is concerned with the indirect effects of actions in the pres-
ence of constraints. The ramification problem is of great impor-
tance to the database systems. Database users and designers may
not know exactly all the indirect effects of their transactions. This

0957-4174/$ - see front matter � 2009 Elsevier Ltd. All rights reserved.
doi:10.1016/j.eswa.2009.06.110

* Corresponding author.
E-mail addresses: npapadak@cs.teicrete.gr (N. Papadakis), jchrist@csd.uoc.gr

(Y. Christodoulou).

Expert Systems with Applications 37 (2010) 1374–1390

Contents lists available at ScienceDirect

Expert Systems with Applications

journal homepage: www.elsevier .com/locate /eswa

http://dx.doi.org/10.1016/j.eswa.2009.06.110
mailto:npapadak@cs.teicrete.gr
mailto:jchrist@csd.uoc.gr 
http://www.sciencedirect.com/science/journal/09574174
http://www.elsevier.com/locate/eswa


means that the users/designers can execute a transaction which
has as a result to violate the integrity constraints. The most obvious
solution is to determine manually all the indirect effects. The prob-
lem with this solution is that in a large database with a large num-
ber of constraints and transactions, the indirect effects produced
by the evaluation of transactions may be too many to be accounted
for manually. Also, users/designers may not know all the indirect
effects of their transactions. Assume database systems with many
hundreds of transactions, many hundreds of integrity constraints
and more than one designer. In such databases, with a large num-
ber of constraints and transactions, indirect effects may be too
many to be manually discovered. Notice that the same sequence
of transactions may have different indirect effects, if the context
of the database in the start of the execution is different.

In the following section, we will describe the ramification prob-
lem in conventional and in spatial databases, explaining the differ-
ence between them and the reason that the solutions that are
proposed for conventional databases cannot address the ramifica-
tion problem in spatial databases. Next, in Section 3, we will de-
scribe the representation of spatial data in relational databases,
as has been proposed. Then, in Section 4, we will explain the solu-
tion we propose, describing the concept and the algorithms. In Sec-
tion 5 we will give a complete example of the execution of the tool
(Java program), describing what input should be given and what
the results will be like. After that, in Section 6, we will explain
the architecture of the system. In Section 7, we will present a proof
of the correctness of the systems, the complexity of our solution
and some evaluation results from the tests we made.

2. The ramification problem in conventional and in spatial
databases

2.1. The ramification problem in conventional databases

The ramification problem is a very hard problem that arises in
robotics, software engineering and databases. We introduce this
problem by means of an example. Suppose that we are interested
in maintaining a database that describes a simple circuit (Fig. 1),
which has two switches and one lamp. The circuit’s behavior is de-
scribed by the following integrity constraints:

upðs1Þ ^ upðs2Þ � light; ð1Þ
:upðs1Þ ) :light; ð2Þ
:upðs2Þ ) :light: ð3Þ

The first constraint implies that when the two switches are
turned on, then the lamp is lit. The second and third constraints
imply that if a switch is turned off, then the lamp must not be lit.

Action toggle switch changes the situation of a switch as
follows:

toggle switchðsÞ ! upðsÞ if :upðsÞ;
toggle switchðsÞ ! :upðsÞ if upðsÞ:

The above propositions describe the direct effects of the action
toggle switch. A situation is consistent when it satisfies all the
integrity constraints. Assume that the circuit is in the situation
S ¼ f:upðs1Þ;upðs2Þ;:lightg. The situation S is consistent, because
it satisfies all integrity constraints. Assume that we execute the ac-
tion toggle switchðs1Þ. This action has as a direct effect on the
change of the state of switch s1 from :upðs1Þ to upðs1Þ. Now the sit-
uation of the circuit is S1 ¼ fupðs1Þ;upðs2Þ;:lightg. This situation is
inconsistent, because it violates the first integrity constraint. In or-
der to reach a consistent situation we must change the situation S1

in one of the following situations

S2 ¼ fupðs1Þ;upðs2Þ; lightg;
S3 ¼ fupðs1Þ;:upðs2Þ;:lightg:

Both situations ðS2; S3Þ are consistent because all the integrity
constraints are satisfied. As we observe, the updates from :light
to light in the situation S2 or the change from upðs2 to :upðs2Þ in
the situation S3 happen in order to produce a consistent situation
and not as a direct effect of the action toggle switchðs1Þ.1 These
are the indirect effects of the action toggle switchðs1).

The reasonable conclusion is that the lamp must be lit. In order
to infer this conclusion we must determine which could be the
indirect effects of the action. We discuss this in Section 4.

Notice that the indirect effects exist because of the presence of
the integrity constraints. The ramification problem refers to the con-
cise description of the indirect effects of an action in the presence
of constraints.

Several ways of addressing the ramification problem have been
suggested in literature. The majority of them are based on the sit-
uation (McCarthy & Hayes, 1969) and the event calculus.

2.2. Basic terminology in situation calculus

� All predicates and functions whose true value changes from one
world state to another are called fluents.

� One possible evolution of the world is a sequence of actions and
is represented by a first-order term, called situation.2

� An action can change the value of some fluents.
� A situation is consistent when all the integrity constraints are

satisfied.
� An action occurs in a situation and yields another situation as a

result.
� The binary function do is defined as follows, with doða; sÞ denot-

ing the situation that will result from the execution of action a in
the situation s.

� An action can be executed if it satisfies some conditions. We call
these preconditions, as we have already mentioned. The binary
predicate Poss declares whether a precondition holds. When
the predicate Possða; sÞ is true then the action a can be executed
in the situation s.

Among the simplest solutions proposed are those which are
based on the minimal change approach (Ginsberg & Smith, 1988;
Winslett, 1988). These solutions suggest that when an action oc-
curs in a situation S one needs to find the consistent situation S0,
which has the fewer changes from the situation S. For instance,
consider the modeling of a simple circuit as an example. Assume
situation S ¼ f:upðs1Þ;upðs2Þ;:lightg. The action toggle –
switchðupðs1ÞÞ changes the situation of the circuit to S0 ¼ fupðs1Þ;
upðs2Þ;:lightg, which is inconsistent. There are two consistent sit-
uations S1 ¼ fupðs1Þ;upðs2Þ; lightg and S2 ¼ fupðs1Þ;:upðs2Þ;
:lightg. It is sensible to light the lamp, whereas turning off the

light

up(s1) up(s2)

Fig. 1. Simple electric circuit.

1 The direct effect of its action is upðs1Þ.
2 A more simple situation contains the value of fluents.

N. Papadakis, Y. Christodoulou / Expert Systems with Applications 37 (2010) 1374–1390 1375



Download English Version:

https://daneshyari.com/en/article/387122

Download Persian Version:

https://daneshyari.com/article/387122

Daneshyari.com

https://daneshyari.com/en/article/387122
https://daneshyari.com/article/387122
https://daneshyari.com

