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a b s t r a c t

In this paper, a wavelet network is presented to design different controllers for DC motors based on the
multi-resolution analysis and the wavelet transform. One of the basic advantages of wavelet network is
that training is done using the recursive least square method which is suitable for online training usually
required for adaptive control. The wavelet network is used to design adaptive speed controllers for a DC
motor to achieve high performance speed control even if the motor model is unknown, the load charac-
teristics are also unknown function of speed and the load torque changes online. Simulation and exper-
imental results are presented to validate the effectiveness of the proposed controllers.

� 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Wavelet transform is a signal processing tool based on repre-
senting any signal as a weighted summation of wavelet basis func-
tions. Wavelet basis functions are dilated and translated versions
of certain function called the mother wavelet. For certain function
to be a valid mother wavelet, it must satisfy certain admissibility
conditions (Rao & Bopardikar, 1998). Since its introduction as a
specialized field in the mid 1980, wavelet transform has found
many applications in many different fields. Combining both the
wavelet transform and the basic ideas of neural networks results
in a new network called wavelet network (WN) (Zhang & Benven-
iste, 1992). The objective of such network was to use the wavelet
transform to overcome the problems arising in feed-forward neu-
ral network especially the computationally heavy training and
the application dependent structure. Actually, the network pro-
posed in Zhang and Benveniste (1992) was essentially an ordinary
radial basis function network with wavelet functions used in the
hidden units. In Zhang, Walter, Miao, and Lee (1995), a wavelet
network which depends on multi-resolution analysis and wavelet
transform is proposed. The wavelet networks can be classified into
orthogonal and non-orthogonal networks depending on the prop-
erties of the wavelet function used to construct the network.
Orthogonal wavelet networks depend on generating orthonormal
basis using the wavelet function. However, in order to generate
an orthonormal basis, the wavelet function has to satisfy some
restrictions (Zhang, 1997). The training of the orthonormal wavelet
network is fast and the construction is easier. On the other hand,

the non-orthogonal wavelet network uses the so-called wavelet
frame (Daubechies, 1990). The orthogonal wavelet network has re-
ceived more interest especially in control applications where the
emphasis is on the fast training required in online training. Sures-
hbabu and Farrell (1999) have proposed a general method for the
use of orthogonal wavelet networks in nonlinear system identifica-
tion. In Xu and Tan (2007) an adaptive wavelet network-based con-
trol approach is proposed for highly nonlinear uncertain dynamical
systems. The adaptive learning control approach with wavelet
approximation is applied to two general classes of plants (Xu,
Yan, & Wang, 2007). In Kulkarni and Purwar (2009), a wavelet-
based adaptive backstepping controller for a class of nonlinear,
nonregular systems is proposed to provide the desired perfor-
mance in presence of actuator constraints. The integration of fuzzy
set theory and wavelet neural network is considered in Abiyev
(2005) to design control system for uncertain dynamic processes.

High performance electric drive systems are increasingly used in
modern applications. Conventional controllers usually have poor
performance due to their inability to capture the unknown load
characteristics over wide operating region. The adaptive control
could have better performance. The motor could be identified using
a linear parametric model; for instance an ARMA model. However,
the characteristics of the load are usually nonlinear. Hence, it is
required to identify the motor based on nonlinear model. Neural
networks have been used to control DC motors (Weerasooriya &
El-Sharkawi, 1991) with good results. However, the main disadvan-
tage of using neural networks is the back-propagation training
algorithm which requires a heavy computation load and thus not
suitable for online training. In Rubaai and Kotaru (2000) the
dynamic back-propagation algorithm was used to improve the
identification, however, the computational load is still heavy.

In this paper, an orthogonal wavelet network is used to achieve
high performance motion control for a DC motor with unknown
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parameters and unknown load characteristics. Three different
speed controllers are designed and implemented. Moreover, the
paper investigates the use of forgetting factor in the least square
algorithm for the online training of the wavelet network. The paper
is organized as follows: Section 1, presents an introduction and
brief literature survey. Wavelet transform and the capability of
multi-resolution analysis to approximate nonlinear functions are
outlined in Section 2. System identification and adaptive speed
control of DC motors using wavelet network are given in Sections
3 and 4 respectively. To validate the effectiveness of the proposed
controllers, both simulation and experimental results are shown in
Sections 5 and 6 respectively. Conclusions are drawn in Section 7.

2. Wavelet transform and multi-resolution analysis

Essentially the multi-resolution analysis (MRA) represents the
successive approximation of a function in a sequence of nested
subspaces of linear vector space (Rao & Bopardikar, 1998). Wavelet
transform appears naturally in the context of the MRA which is
based on orthogonal wavelet function. This is done by defining
two functions, namely scaling and wavelet functions. Scaling func-
tion {uj, n} forms an orthonormal basis for a sequence of nested
spaces such that:

� � � � V�1 � V0 � V1 � � � � ð1Þ
\

j2Z
Vj ¼ f0g ð2Þ

[
j2Z

Vj ¼ L2ðRÞ ð3Þ

where L2(R) is the space of square integrable functions and j 2 Z
where Z is the set of integers, and uj,n 2 L2 (R), uj,n = u (2�jt � n), n
is the translation parameter and j is the resolution (dilation) param-
eter. In particular, the above representation means that a function
f(t) in the L2(R) space could be approximated with different accura-
cies depending on the resolution of the space at which the function
is approximated. That is:

fjðtÞ ¼
X1

l¼�1
lðj; lÞuð2�jt � lÞ ð4Þ

where the function fj(t) denotes the approximation of the function
f(t) at resolution j and l(j,l) are the coordinates of the scaling func-
tion at this sub-space. The details added at each approximation are
located in other subspaces. These new subspaces Wi – which con-
tains the details – are orthonormal and have the so-called wavelet
orthonormal basis defined by wj,n = w(2� jt � n) where j,n 2 Z. The
function w is the wavelet function which must have the orthonor-
mal properties. In this paper, Meyer scaling and wavelet functions
are used. It could also be proved that (Rao & Bopardikar, 1998)

Vj�1 ¼ Vj �Wj ð5Þ

where � denotes the direct sum of the two spaces. Repeating this
equation successively we reach the following equation:

L2ðRÞ ¼ � � � �W�1 �W0 �W1 � � � � ð6Þ

That is, the orthonormal wavelet basis generates an orthogonal
decomposition of the L2 space. It is noted in (4) that, as the resolu-
tion parameter j decreases, the approximation gets finer. Thus for a
given constant e > 0 there exists an integer j0 and a function

f̂ ðt; j0Þ ¼
X1

l¼�1
lðj0; lÞuð2

�j0 t � lÞ ð7Þ

where kf ðtÞ � f̂ ðt; j0Þk < e and uð2�j0 t � lÞ denotes the scaling func-
tion with certain resolution j0 (Sureshbabu & Farrell, 1999) and the
functional k:k is the L2 norm. Moreover if the function f(t) is defined

over a small region, then we can truncate the above summation and
write (7) as

f̂ ðt; j0Þ ¼
XU

l¼L

lðj0; lÞuð2
�j0 t � lÞ ð8Þ

for some U,L 2 Z. The choice of the parameters U,L depends on the
region over which the function is defined. In other words, noting
that the distance between two successive functions in the above
series equals 2j0 and denoting the period over which we try to
approximate the function f as [X1,X2] then,

L � X1

2j0
and U � X2

2j0
ð9Þ

Eq. (8) represents a wavelet network which provides an approx-
imation of a given function in single resolution j0. A structural rep-
resentation of (8) is shown in Fig. 1. Therefore, the problem of
approximating a single dimension function at certain predeter-
mined resolution is reduced to the problem of finding the param-
eters l(j0,l) appearing in (8) by iterative method using the input
and output data only. Note that the parameters l(j0,l) appear line-
arly in Eq. (8), thus the problem of finding the best parameters con-
stants l(j0,l) – which corresponds to the training of the network –
could be solved easily using recursive least square algorithms.

The extension of the wavelet network to the multi-dimensional
case is straight forward. This is achieved by defining multi-dimen-
sional scaling functions as follows

Uðx1; x2; . . . ; xnÞ ¼ uðkXkÞ ð10Þ

where u(�) is the scaling function in one dimension and kXk denotes
the Euclidean norm. Thus, after defining the multi-dimensional
scaling or wavelet functions, the process of approximating a mul-
ti-dimensional function is typical to the case of single dimension
function as discussed previously. However, the approximation of
multi-dimensional functions is more difficult due to the curse of
dimensionality problem (Zhang, 1997).

3. System identification using wavelet network

For certain dynamical system, let y(t) and u(t) denote the output
and input of a given system respectively at time t. Collecting the
values of input and output at discrete instances, one should have
the following data

/ðtÞ ¼ ½yðt � 1Þ; . . . ; yðt � aÞ; uðt � 1Þ; . . . ; uðt � bÞ� ð11Þ

where a,b are positive integers. In the identification setup, one is
looking for a model which would map the past data vector set /
(t) to the next output of the form

y
_
¼ f ð/ðtÞÞ ð12Þ

The non-linear mapping f(t) is a function from Rd to R, where
d = a + b, represents the number of elements of the /(t) vector.

Fig. 1. Structure of wavelet network.
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