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a b s t r a c t

In the study, we discussed the ARCH/GARCH family models and enhanced them with artificial neural net-
works to evaluate the volatility of daily returns for 23.10.1987–22.02.2008 period in Istanbul Stock
Exchange. We proposed ANN-APGARCH model to increase the forecasting performance of APGARCH
model. The ANN-extended versions of the obtained GARCH models improved forecast results. It is note-
worthy that daily returns in the ISE show strong volatility clustering, asymmetry and nonlinearity
characteristics.

� 2008 Elsevier Ltd. All rights reserved.

1. Introduction

The importance of volatility has led to the development and
application of many significant econometric models and found
important application areas in financial markets as a result of both
the need of modeling the uncertainty and the risk in financial asset
returns. The three most significant characteristics of returns in
financial assets could be stated as the following: volatility clustering
property, as a result of the volatility changes over time in magni-
tude and in cases where prices hardly change but volatility in-
creases in sizes of large clusters; asymmetric relation property of
volatility to past return shocks (Engle & Ng, 1993; Glosten, Jagan-
nathan, & Runkle, 1993; Nelson, 1991, 1992); and nonlinearity
property, the path of volatility reacts differently in different re-
gimes (Klaassen, 2002; Kramer, 2006).

Engle (1982) ARCH models and Bollerslev (1986) GARCH mod-
els found many important applications in the financial markets.
As a result, GARCH models respond to the need felt for a foresight
method that takes into account various properties of the probabil-
ity distribution of return series of financial variables and had been
used intensively in academic studies. Due to this effect, asymmet-
ric GARCH models have rapidly expanded (Nelson, 1991). While
Nelson (1991) developed Exponential GARCH (EGARCH) model,
Zakoian (1994) and Glosten et al., 1993 working independent of
one another developed the GJR-GARCH model. Zakoian (1994)

introduced the Threshold GARCH (TGARCH) model and Sentana
(1995) introduced the Quadratic GARCH (QGARCH) model.

GARCH models of Taylor (1986) and Schwert (1989) relate the
conditional standard deviation of a series and past standard devia-
tions of a different property compared to other models. The model
was generalized by Ding, Granger, and Engle (1993) as Power
GARCH. This study can be considered as the basis of the APGARCH
literature. Hentschel (1995) has applied his study, in which he pro-
poses a more general model of the Power ARCH model, to US stock
market data. Tse and Tsui (2002) determined the APGARCH model.
Brooks, Faff, McKenzie, and Mitchell (2000) show the leverage ef-
fect in the model and the usefulness of including a free power
term.

In this study, we aim to analyze the volatility of stock return
behavior of Istanbul Stock Exchange ISE 100 Index for the
23.10.1987–22.02.2008 period. The study will compare and com-
bine a general class of Autoregressive Conditional Heteroscedastic-
ity (G)ARCH family models (Bollerslev, 1986; Engle, 1982; Nelson,
1991) of GARCH, EGARCH, GJR-GARCH, TGARCH, NGARCH, SA-
GARCH, PGARCH, APGARCH, NPGARCH with Artificial Neural Net-
work models and discuss and compare them in accordance with
their forecast capabilities. The study is organized into the following
sections: Theory and Data Characteristics, Econometric Results and
lastly, Conclusion.

2. Theory

ANN models have found many important applications espe-
cially in the field of financial modeling and forecasting in the re-
cent literature. Among many, Abhyankar, Copeland, and Wang
(1997), Castiglione (2001), Freisleben (1992), Kim and Chun
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(1998), Liu and Yao (2001), Phua, Zhu, and Koh (2003), Refenes,
Zapranis, and Francies (1994) and Zhu, Wang, Xu, and Li (2007) ap-
plied nonlinear forecast methods to financial markets. Further,
Black and McMillan (2004), Donaldson and Kamstra (1997), Jasic
and Wood (2004), Kanas (2001), Kanas and Yannopoulos (2001)
and Shively (2003) applied regarding the stock prices; whereas,
Dunis and Huang (2002) and Hamid and Iqbal (2004) provide
insightful applications regarding the stock volatility.

Dutta and Shektar (1988) and Surkan and Xingren (1991) ap-
plied ANN models to rate bonds, Kamijo and Tanigava (1990) to
stock prices, Tam and Kiang (1992) to forecasting bank failures,
Hutchinson, Lo, and Poggio (1994) to forecasting option prices
and as an assessment to hedging, Grudnitsky and Osburn (1993)
to gold futures prices and S&P 500 forecasting, Leung, Chen, and
Daouk (2000) to FOREX forecasting, Barr and Mani (1994) to
investment management, Saad, Prokhorov, and Wunsch (1998) to
stock trend predicton, Udo (1993) and Wilson and Sharda (1997)
to bankruptcy classification, Kaski and Kohonen (1996) to eco-
nomic rating and Kong and Martin (1995) and Thiesing, Middle-
berg, and Vornberger (1995) to sales forecasting.

In the study, we investigated the conditional volatility by apply-
ing a hybrid modeling approach that combines various GARCH
family models. Furthermore, we used the Back Propagation Artifi-
cial Neural Network model for forecasting.

2.1. Multilayer perceptron models

Neural networks represent an important class of nonlinear
approximation and classification models relating a set of input
variables to one or more output target variables that contain non-
linear latent units to achieve significant flexibility (Kay and Titter-
ington, 1999: p. 2). Rosenblatt (1962) discussed the single hidden
layer feedforward neural networks and called ANN models with
threshold activation functions as the perceptron. The details of per-
ceptron are analyzed in Block (1962). A similar model had been
introduced and discussed in detail by Widrow and Hoff (1960)
called ADALINES (ADaptive LINear Elements) that refers to a single
hidden unit with threshold nonlinearity. See Bishop (1995) and
Widrow and Lehr (1990) for detail.

Rosenblatt (1962) perceptron is stated as

ot ¼ f
Xs

j¼0

wj/jðxÞ
 !

; j ¼ 0;1; . . . ; s ð1Þ

where uj is the activation function given in vector form u0, . . .,us; x
is the input variable matrix, wj is the weight, f is the output function
and o is the output of the neuron. The perceptron model of Rosen-
blatt uses the threshold activation function of the form,

f ðaÞ ¼ �1 if a < 0
þ1 if a � 0

�
The function is bounded between [�1,+1].

In the NN literature, several activation functions are applied.
The threshold function or step function can be expressed to be

bounded between [0,1] having the form, f ðaÞ ¼ 0 if a < 0
1 if a � 0

�
ex-

pressed similar to the step function. A commonly applied form of the
output function f is the logistic form to achieve a bounded, continu-
ous, sigmoidal and twice differentiable in the log-sigmoid form,
f ðaÞ ¼ 1=ð1þ e�aÞ. The tanh activation function is employed to
achieve practical advantage in certain applications and bounded be-
tween [�1,+1] similar to Rosenblatt threshold which is defined as
f ðaÞ ¼ tanh ¼ ea�e�a

eaþe�a, continuous and sigmoid (Bishop, 1995: p. 98).
The multilayer perceptron model is achieved by a weighted lin-

ear combination of the d input values in the form

aj ¼
Xd

i¼0

wð1Þji xi ð2Þ

By employing an activation function g(�); zj = g(aj). The network is
achieved by associating the activations of the hidden units to the
second layer. For each output unit k

aj ¼
XM

i¼0

wð2Þkj zj ð3Þ

using a nonlinear activation function, yk ffi g(ak). The complete func-
tion of MLP can be expressed by combining (2) and (3) to give

yk ¼ ~g
XM

j¼0

wð2Þkj g
X

wð1Þji xi

� � !
ð4Þ

If the output function is taken linear, ~gðaÞ ¼ a, the model reduces to

yk ¼
XM

j¼0

wð2Þkj g
X

wð1Þji xi

� �
ð5Þ

There are several training methods for Neural Networks. In NN
literature, the most common method of model estimation is Back-
propagation (Rumelhart, Rubin, Golden, & Chanvin, 1995), where
parameters are updated so that the tuning of parameters is in
accordance with the quadratic loss function; hence, the resulting
weight decay method aims to estimate weights iteratively to
achieve the lowest error. Alternative methods include Genetic
Algorithms for nonlinear optimization and training of Neural
Networks (Goldberg, 1989). Other second-order derivative based
optimization algorithms are the Conjugate Gradient Descent,
Quasi-Newton, Quick Propagation, Delta-Bar-Delta and Leven-
berg–Marquardt (Marquardt, 1963), which are faster and effective
algorithms but more exposed to over-fitting, an important
phenomenon in Neural Networks. To overcome over-learning, we
applied two methods. First, the early stopping and second, the algo-
rithm cooperation. The early stopping approach aims to stopping
the training once the selection error starts to rise. The ANN models
are retrained with conjugate gradient descent algorithm after the
training with backpropagation.2

2.2. NN-GARCH models

In addition, we will investigate the negative and positive im-
pacts of shocks on volatility by using the APGARCH model that uti-
lizes the power parameter and then apply if for forecasting. Third,
we will investigate the forecast efficiency of GARCH, EGARCH,
TGARCH, GJR-GARCH, SAGARCH, PGARCH, NPGARCH, and AP-
GARCH models.

In NN-GARCH model, the learning process is applied to
GARCH(1,1) process by including the input variables defined as
r2

t�1 ¼ c1r2
t�1 and e2

t�1 ¼ b1e2
t�1.

On the other hand, in the NN-EGARCH model, ln r2
t�1 ¼c1 ln r2

t�1

and for the leverage effect,LðleverageÞ ¼ d et�1
rt�1

so that

LEðleverage effectÞ ¼ c et�1
rt�1
�

ffiffiffi
2
p

q��� ��� was obtained by including b, c

and d parameters to define L and LE.

2 The methodology we followed has two stages to overcome local minima:

(I) Back propogation

(i) The sample is divided into training/test/selection subsets.

(ii) Both training and test samples are trained with large steps.

(iii) The minimization criteria (RMSE) is checked every epoch.

(iv) Training is early stopped if the RMSE starts to increase for the test subsam-
ple even if the same does not hold for the training sample (generalization
principle).

(II) Conjugate Gradient Descent
(v) Training is repeated with conjugate gradient descent (stages i.–iv.) but with

small steps (low learning rate in ii.).Model is accepted if the global mini-
mum is reached (see Patterson, 1996; Haykin, 1994; Fausett, 1994).
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