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a b s t r a c t

Effective one-day lead runoff prediction is one of the significant aspects of successful water resources
management in arid region. For instance, reservoir and hydropower systems call for real-time or on-line
site-specific forecasting of the runoff. In this research, we present a new data-driven model called support
vector machines (SVMs) based on structural risk minimization principle, which minimizes a bound on a
generalized risk (error), as opposed to the empirical risk minimization principle exploited by conven-
tional regression techniques (e.g. ANNs). Thus, this stat-of-the-art methodology for prediction combines
excellent generalization property and sparse representation that lead SVMs to be a very promising fore-
casting method. Further, SVM makes use of a convex quadratic optimization problem; hence, the solution
is always unique and globally optimal. To demonstrate the aforementioned forecasting capability of SVM,
one-day lead stream flow of Bakhtiyari River in Iran was predicted using the local climate and rainfall
data. Moreover, the results were compared with those of ANN and ANN integrated with genetic algo-
rithms (ANN-GA) models. The improvements in root mean squared error (RMSE) and squared correlation
coefficient (R2) by SVM over both ANN models indicate that the prediction accuracy of SVM is at least as
good as that of those models, yet in some cases actually better, as well as forecasting of high-value
discharges.

� 2008 Elsevier Ltd. All rights reserved.

1. Introduction

River flow forecasting is required to provide basic information
on a wide range of problems related to the design and operation
of river systems. The availability of extended record of rainfall
and other climate data, which could be used to obtain stream flow
data, initiated the practice of rainfall-runoff modeling.

Conceptual or physically-based models are of great importance
in the understanding of hydrological processes. But these modeling
approaches are limited due to multitude as well as complexity of
the processes involved and also by scarcity of data (Task Commit-
tee on Application of the Artificial Neural Networks in Hydrology,
2000a). In recent years, non-linear data-driven models are being
widely used as surrogate for the conceptual models. They are able
to capture the behavior of the underlying physical or other pro-
cesses. Such approaches might be made to evolve reliable forecast-
ing models using measured historical data. These modeling tools
like artificial neural networks (ANNs) do not require knowledge
of mathematical relationship between the inputs and correspond-

ing outputs as well as explicit characterization and quantification
of physical properties and conditions.

In addition to applications of ANNs, in the past decade support
vector machines (SVMs) have gained the attention of many
researchers. SVMs rely on statistical learning theory which enables
learning machines to generalize well to unseen data. The main
characteristics of the SVM can be summarized as follows: (a) a glo-
bal optimal solution is found by quadratic programming method,
(b) the result is a general solution which relatively avoids over
training as it employs the structural risk minimization principle,
(c) the solution is also sparse, hence only a limited subset of train-
ing points contribute to this solution, and (d) non-linear relations
can be learned effectively owing to the usage of kernel functions.
Consequently, SVMs have gained popularity in many traditionally
ANNs dominated applications. They seem to be powerful alterna-
tives which overcome some of the basic weakness related to ANNs
modeling while retain all strengths of ANNs (Task Committee on
Application of the Artificial Neural Networks in Hydrology,
2000b). The objective of this study is to provide a forecasting sys-
tem based on SVM approach whose ability is to predict one-day
lead stream flow by emphasizing high-value discharges. The
results associated with ANN models are used to demonstrate the
performance of SVM method.
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Although SVMs have remarkable successes in various fields,
there are a few studies on their applications in water resources
and hydrology (Smola & Schölkopf, 2004). Dibike, Velickov,
Solomatine, and Abbott (2001) demonstrated the capability of
SVM in hydrological prediction when it was applied in classifying
digital remote sensing data and also modeling of rainfall-runoff -
process. They also compared the results with those of ANN model
(Dibike et al., 2001). Liong and Sivapragasam (2002) successfully
employed SVM in the flood stage forecasting (Liong & Sivapraga-
sam, 2002). Asefa, Kemblowski, Urroz, McKee, and Khalil (2004),
Asefa, Kemblowski, Urroz, and McKee (2005a) examined the capa-
bility of SVM in optimal design of groundwater monitoring net-
works (both for head observation and contamination monitoring
networks) and inferred that the SVM can be used as a novel tool
for selecting the configuration of optimal monitoring network
(Asefa, Kemblowski, Urroz, & McKee, 2005a; Asefa, Kemblowski, Ur-
roz, McKee, & Khalil, 2004). Moreover, they investigated some other
successful applications of SVM corresponding to hydrology and
water resources management such as snow-runoff modeling and
learning of chaotic time series (Asefa, Kemblowski, Lall, & Urroz,
2005b; Asefa, Kemblowski, McKee, & Khalil, 2006). Khalil, Almasri,
McKee, and Kaluarachchi (2005a) examined four kinds of learning
algorithms named SVMs, RVMs (relevance vector machines), LWPR
(locally weighted projection regression) and ANNs as surrogates for
relatively complex and time consuming mathematical models, to
estimate the groundwater nitrate contamination level (Khalil
et al., 2005a). He also applied RVM, which is a probabilistic model,
with SVM in capturing the uncertainties in both model parameters
and input data with an application in a real case study involving the
real-time operation of a reservoir in a watershed in southern Utah
(Khalil, McKee, Kemblowski, & Asefa, 2005b). Khalil, McKee,
Kemblowski, Asefa, and Bastidas (2006) exploited the appealing
regularization concepts of both SVM and RVM to determine the
optimal parameters of powerful state-space reconstruction meth-
odology and also hyper parameters of learning machines within a
multi objective optimization framework and finally analyzed cha-
otic dynamic systems (Khalil et al., 2006). Yu, Chen, and Chang
(2006) invoked SVM to establish a river stage forecasting model,
whose input vector encompassed both rainfall and river stage, to
predict the hourly stage of the flash flood (Yu et al., 2006). Lin,
Cheng, and Chau (2006) used SVM for long-term discharge predic-
tion and compared the performance of SVM with two alternative
methods, ANN and ARMA (Auto Regression Moving Average) mod-
els (Lin et al., 2006). In all of the above-mentioned applications,
when researchers collated the results of SVM modeling with an
alternative modeling approach such as ANN, it would be obvious
that SVM had promising performance due to its high generalization
characteristic. It should be noted that the use of ANNs in prediction
of runoff has been investigated by many researchers (e.g. Dibike &
Solomatine, 2001; Kisi, 2004; Tokar & Markus, 2000; Zealand &
Burn, 1999).

The rest of this paper is organized as follows. The SVR model is
introduced in the next section and the third section illustrates the
study area and available data. Then, support vectors machines and
neural networks characteristics applied in this study are presented
in the fourth section. Subsequently, the results of the SVMs along
with ANNs modeling are depicted in the fifth section to demon-
strate the performances of different forecasting models. Some con-
clusions are then made in the final section.

2. SVMs theory

SVMs are particular learning systems that use a linear high
dimensional hypothesis space called feature space. These systems
are trained using a learning algorithm which is based on optimiza-

tion theory. This method was introduced by Vapnik (1998) and his
colleagues as a robust and significant learning tool, which uses a
learning bias derived from statistical learning theory (SLT). We
borrow the following SVMs theoretical background from Schölkopf
and Smola (2002), Cristianini and Shawe-Taylor (2000).

2.1. SVMs for regression estimation

SVMs have been employed for regression estimation, the so
called support vector regression (SVR), in which the real value
functions are estimated. In this case, the aim of learning process
is to find a function f(x) as an approximation of the value y(x) with
minimum risk, and only based on the available independent and
identically distributed data, i.e.

ðx1; y1Þ; . . . ; ðxm; ymÞ# ðX # Rn � Y # RÞ ð1Þ

In SVR algorithm, the estimation function is determined by a small
subset of training samples namely support vectors (SVs). Also in
this algorithm, a specific loss function called e-insensitive loss is
developed to create a sparseness property for SVR. This function
is described as follows:

jy� f ðxÞje ¼
0 if jy� f ðxÞj 6 e
jy� f ðxÞj � e otherwise

�
ð2Þ

where f(x), which is computed by the SVR, is the estimated va-
lue of the y and the corresponding errors being less than e-boundary
(e-tube) are not penalized (Fig. 1).

For developing the regression algorithm, we begin with the lin-
ear function estimation. It is clear that every linear function of in-
put vector x has the following representation:

f ðxÞ ¼ hw; xi þ b; where w; x 2 X # Rn; b 2 R: ð3Þ

Noted that angle bracket indicates the inner product of two vec-
tors in Hilbert space (i.e. a space in which inner product of two vec-
tors has a real value, also called inner (or dot) product space).

For finding f(x) one should minimize the regulated risk func-
tional (Rreg) (instead of just empirical risk functional which is used
in traditional learning algorithms such as ANNs) defined as follows;

Rreg½f � ¼
1
2
kwk2 þ C:Re

emp½f � where Re
emp½f � ¼

1
m

Xm

i¼1

jyi � f ðxiÞje

ð4Þ

The Re
emp is the empirical error over training data which is de-

fined in e-insensitive loss function framework. Coefficient C in
the Eq. (4) is an indicator of the complexity of function f. Briefly
speaking, the minimization of the Rreg illustrates the principle idea
of the structural risk minimization theory which states that for
achieving the minimum risk, simultaneous control of the complex-
ity of the model and the error owing to training data is essential.
This idea improves the generalization of the SVRs.

2.2. Principle objective function

It has been shown that minimizing the Eq. (4) is equivalent to the
following convex constrained quadratic optimization problem:

minimize sðw; nð�ÞÞ ¼ 1
2 kwk

2 þ C � 1
m

Pm
i¼1
ðni þ n�i Þ;

subject to ðhw; xii þ bÞ � yi 6 eþ ni;

yi � ðhw; xii þ bÞ 6 eþ n�i ;

nð�Þi P 0:

ð5Þ

w 2 X; nð�Þi 2 Rm; b 2 R; i ¼ 1; :::;m

where the slack variable n(*) encompasses both the n, n* variables.
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