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a b s t r a c t

Accurate recognition of cancers based on microarray gene expressions is very important for doctors to
choose a proper treatment. Genomic microarrays are powerful research tools in bioinformatics and mod-
ern medicinal research. However, a simple microarray experiment often leads to very high-dimensional
data and a huge amount of information, the vast amount of data challenges researchers into extracting
the important features and reducing the high dimensionality. This paper proposed the kernel method
based locally linear embedding to selecting the optimal number of nearest neighbors, constructing uni-
form distribution manifold. In this paper, a nonlinear dimensionality reduction kernel method based
locally linear embedding is proposed to select the optimal number of nearest neighbors, constructing uni-
form distribution manifold. In addition, support vector machine which has given rise to the development
of a new class of theoretically elegant learning machines will be used to classify and recognise genomic
microarray. We demonstrate the application of the techniques to two published DNA microarray data
sets. The experimental results and comparisons demonstrate that the proposed method is effective
approach.

� 2008 Published by Elsevier Ltd.

1. Introduction

Genomic microarray data have attracted a great deal of atten-
tion, as reflected by the ever increasing number of publications
on this technology in the past decade. A common application in
microarray data analysis is to identify genes that, based on their
expression levels, discriminate between known classes of experi-
ments. This identification is often achieved by using various statis-
tical measures to, gene-by-gene, correlate the expression levels
with the classes of interest. The application of microarrays technol-
ogy encompasses many fields of study. From the search for differ-
entially expressed genes, genomic microarrays data present
enormous opportunities and challenges for machine learning, data
mining, pattern recognition, and statistical analysis, among others.
In particular, microarray technology is a rapidly maturing technol-
ogy that provides the opportunity to assay the expression levels of
thousands or tens of thousands of genes in a single experiment
(Shalon, Smith, & Brown, 1996). Nevertheless, the analysis of
microarray data remains a challenge as one wish to investigate
the possibility of the expression of thousands of genes across mul-
tiple samples. Naturally the issue of multiplicity arises as one
examines the significance of large numbers of genes. Manifold
learning is a perfect tool for data mining that discovers the struc-

ture of high dimensional data sets and provides better understand-
ing of the data. Several different manifold learning algorithms have
been developed to perform dimensionality reduction of low-
dimensional nonlinear manifolds embedded in a high dimensional
space. locally linear embedding (Roweis & Saul, 2000), Isomap
(Tenenbaum, Silva, & Langford, 2000), Laplacian eigenmaps (Belkin
& Niyogi, 2003), and Stochastic neighbor embedding (Hinton &
Roweis, 2003) were originally proposed as a generalization of mul-
tidimensional scaling.

The locally linear embedding (LLE) algorithm belongs to a group
of manifold learning methods is an unsupervised learning algo-
rithm that can compute low dimensional, neighborhood preserving
embeddings of high dimensional data. LLE is considered one of
effective algorithms for dimensionality reduction, and has been
used to solve various problems in information processing, pattern
recognition, and data mining (Zhang, Wang, Zhao, & Zhang, 2004;
Elgammal & Lee, 2004; Mekuz, Bauckhage, & Tsotsos, 2005). LLE
algorithm computes a different local quantity, and calculates the
best coefficients to approximate each point by a weighted linear
combination of its neighbors, and then tries to find a set of low-
dimensional points, which can be linearly approximated by its
neighbors with the same coefficients that have been determined
from high-dimensional points. However, LLE impressionable uni-
form distribution manifold and the number of nearest neighbors.
When LLE is applied to real world data sets and applications, it dis-
plays limitations, such as sensitivity to the noise, outliers, missing

0957-4174/$ - see front matter � 2008 Published by Elsevier Ltd.
doi:10.1016/j.eswa.2008.09.070

* Corresponding author.
E-mail addresses: leesoftcom@gmail.com (X. Li), shul@uestc.edu.cn (L. Shu).

Expert Systems with Applications 36 (2009) 7644–7650

Contents lists available at ScienceDirect

Expert Systems with Applications

journal homepage: www.elsevier .com/locate /eswa

mailto:leesoftcom@gmail.com
mailto:shul@uestc.edu.cn
http://www.sciencedirect.com/science/journal/09574174
http://www.elsevier.com/locate/eswa


data, and poor linear correlation between variables due to poorly
distributed variables. In LLE algorithms, the free parameter is the
LLE’s neighborhood size, which unfortunately, has no direct meth-
od of finding the optimal parameter. The optimal neighborhood
size for each problem is determined by the experimenter’s experi-
ence. On the other hand, if the density of training data is uneven, it
will decrease the precision of classification if only the sequence of
first k nearest neighbors is considered and not the differences of
distances.

The purpose of this paper is to fill these gaps by presenting a
kernel method based LLE algorithm (KLLE). The kernel method
(Schölkopf, Smola, & Müller, 1998; Shawe & Cristianini, 2004) is
demonstrated as having the ability to extract the complicated non-
linear information from application data sets. The kernel function
of the kernel method is a nonlinear mapping from input space
X#Rn onto feature space H#RN , / : X#Rn !H#RN . The ker-
nel method provides a powerful and principled way of detecting
nonlinear relations using well-understood linear algorithms in an
appropriate feature space. This approach decouples the design of
the algorithm from specification of the feature space. Most impor-
tantly, based on the kernel method, the kernel matrix is guaranteed
to be positive semi-definite, convenient for the learning algorithm
receiving information about the feature space and input data, and
projects data onto an associated manifold, such as PCA. In addition,
to solve LLE KNN’s parameter problems, fuzzy KNN (Keller, Gray, &
Givens, 1985) adopts the theory of fuzzy sets to KNN, and fuzzy
KNN assigns fuzzy membership as a function of the object’s dis-
tance from its K-nearest neighbors and the memberships in the
possible classes. This combination has two advantages. Firstly, fuz-
zy KNN can denoise training data sets. And secondly, the number of
nearest neighbors selection, though not the most important, can
consider the neighbor’s fuzzy membership value.

This paper focused on genomic microarray analysis, which en-
ables researchers to monitor the expression levels of thousands
of genes simultaneously (Young, 2000). With the help of gene
expressions, heterogeneous cancers can be classified into appropri-
ate subtypes. To classify tissue samples or diagnose diseases based
on gene expression profiles, both classic discriminant analysis and
contemporary classification methods have been used and devel-
oped. Recently, different kinds of machine learning and statistical
methods (Brown et al., 2000; Lee & Lee, 2003) have been used to
classify cancers using genomic microarrays expression data. To
evaluate the effectiveness of the proposed KLLE dimensionality
reduction method for classification, two published data sets are
used. The experiment shows that dimensionality reduction of
genes can significantly increase classification accuracy.

2. Summary of kernel method and locally linear embedding

2.1. Kernel method

Kernel method has been demonstrated to be able to extract the
complicated nonlinear information embedded on a data set
(Schölkopf et al., 1998; Schölkopf & Smola, 2002), and has become
one of the most popular approaches to learning from examples
with many potential applications in science and engineering
(Wang & Paliwal, 2003). Many algorithms for data analysis are
based on the assumption that the data can be represented as vec-
tors in a finite dimensional vector space, such as linear discrimina-
tion, PCA, or least squares regression, making extensive use of the
linear structure. Kernel method solution comprises two parts: a
module that performs the mapping input space X into the embed-
ding feature space H, the nonlinear mapping is / : X#Rn !
H#RN , and a learn algorithm designed to discover linear patterns
in that space. Firstly, creates a complicated linear feature space,

and then work out what the inner product in that space would
be, and finally find a direct method for computing that value in
terms of the original inputs. In fact, the kernel function K is directly
defined by the nonlinear mapping /ð�Þ, and the feature space H is
simply derived from its definition. The main property of kernel
function is that the fundamental concept of the kernel method is
the deformation of the vector (lower) space itself to a higher
dimensional space.

However, an explicit mapping /ð�Þ does not always exist, and
kernel method’s conditions are not sufficient in guaranteeing the
existence of a feature space. In practice, the mapping is performed
implicitly by choosing the kernel trick (Schölkopf & Smola, 2002),
which consists of expressing the inner product in H as an evalua-
tion of a kernel function Kðxi; xjÞ ¼ h/ðxiÞ;/ðxjÞi for the data points
xi and xj in the input space. Moreover, there is a problem when
choosing the function Kðxi; xjÞ, since not every function is guaran-
teed to give a valid feature space. One way of searching for a valid
kernel function is to draw on Mercer’s theorem (Haykin, 1999)
which states that any continuous symmetric function Kðxi; xjÞ that
satisfies the positive semi-definite conditionZ Z

X�X
Kðxi; xjÞ/ðxiÞ/ðxjÞdxidxj P 0 and

Z
X

/ðxÞ2dx <1 ð1Þ

which is ensured to be a kernel for some valid feature space. This
provides a flexible way of choosing the kernel mapping functions.

2.2. Locally linear embedding algorithm

The LLE (Roweis & Saul, 2000) is a manifold learning method
that has aroused a great deal of interest in machine learning. It
computes low-dimensional, neighborhood-preserving embeddings
of high-dimensional inputs and recovers the global nonlinear
structure from locally linear fits. Essentially, the algorithm at-
tempts to compute a low dimensional embedding with the prop-
erty that nearby points in the high dimensional space remain
nearby and similarly co-located with respect to one another in
the low dimensional space. Put another way, the embedding is
optimized to preserve the local configurations of nearest neigh-
bors. The standard LLE algorithm (Roweis & Saul, 2000) consists
of three steps: (1) finding the k nearest neighbours of each point,
(2) measuring reconstruction error resulting from the approxima-
tion of each point by the neighbour points and compute the recon-
struction weights that minimize the error, (3) computing the low-
embedding by minimising an embedding cost function with the
reconstruction weights. Steps 1 and 2 aim to characterize the
geometry property and preserve it in a matrix. In Step 3, the
low-dimensional embedding is calculated while preserving the
geometry property in the high-dimensional space.

LLE computes dimensionality reduction that preserves the local
neighborhood structure of the input data in the low-dimensional
transformation. The transformation models the subspace manifold
as a connected patchwork of locally linear surfaces. LLE is com-
monly justified using Taylor’s theorem which states that any differ-
entiable function is linear at the limit in a small area around a point.
LLE works by identifying local neighborhood distance relationships,
and by finding a mapping into a lower dimensionality that pre-
serves them as much as possible. The selection of k value is the
key to dimensionality reduction. There have been numerous papers
(Lee & Verleysen, 2005; Marina & Shi, 2001; Kouropteva, Okun, &
Pietikainen, 2002) suggesting that the selection of the neighbor-
hood number k is important to the original LLE. If the number k is
larger, the algorithm will ignore or even lose the local nonlinear fea-
tures on the manifold, just as the traditional PCA performs. In con-
trast, if the number k is defined as smaller, LLE will split the
continuous manifold into detached locality pieces, because the glo-
bal characteristics are lost. On the other hand, it is well known that
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