
Petri net-based engine for adaptive learning

Juan C. Vidal ⇑, Manuel Lama, Alberto Bugarín
Centro de Investigación en Tecnoloxías da Información (CITIUS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain

a r t i c l e i n f o

Keywords:
Adaptive learning
Petri nets
Workflows
IMS Learning Design

a b s t r a c t

In this paper, an IMS LD engine based on a Petri net model that represents the operational semantics of
units of learning based on this specification is presented. The Petri nets of this engine, which is called
OPENET4LD, verify the structural properties that are desirable for a learning flow and also facilitate
the adaptation of the engine if potential changes in the IMS LD specification were proposed. Furthermore,
OPENET4LD has an open and flexible architecture based on a set of ontologies that describe both the
semantics of the Petri nets execution and the semantics of each learning flow component of IMS LD. Fur-
thermore, the implementation of this architecture has been exhaustively validated with a number of UoLs
that are compliant with the levels A and B of IMS LD.

� 2012 Elsevier Ltd. All rights reserved.

1. Introduction

The need to manage reusable resources has led to the develop-
ment of several metadata specifications in order to represent
learning content, educational resources and learning design meth-
odologies. The specifications for the learning design, known as
Educational Modeling Languages (EMLs) (Rawlings, van Rosmalen,
Koper, Rodríguez Artacho, & Lefrere, 2002), are models of aggrega-
tion and semantic information that describe both the content and
the educational activities. These languages are used to describe
from a pedagogical perspective the instructional design of a teach-
ing activity, such as a subject, a course, a presentation, a seminar,
and so on. In this situation teachers usually ask themselves things
like the learning objectives, the content of the activities to be car-
ried out by the students, or the pedagogical methodology to apply.
EMLs usually provide an environment to represent the instruc-
tional design for a particular training activity and to show this
design to the rest of people involved (teachers, students, etc.).
Moreover, its elements are organized in units of learning (UoLs)
in order to enable reuse and interoperability and to facilitate the
description of the pedagogical aspects that are related to learning
objects in educational processes (Koper & Manderveld, 2004).

Of all EMLs, IMS Learning Design specification (IMS LD) (IMS
Global Learning Consortium, 2003; Koper & Tattersall, 2005) has
emerged as the standard de facto for representing the design of a
UoL, known as the learning design. Thus IMS LD facilitates the
design, communication and reuse of processes of learning. It is pri-
marily a specification focused on online learning (e-Learning) that

allows the representation of a large variety of pedagogical models,
and the adaption of their resources in a flexible way. Therefore, IMS
LD is defined as an instructional model which aims to describe
activities to a group of people so they may achieve a set of learning
objectives in the context of a specific knowledge domain. The
underlying principle of IMS LD is that the teaching plan of a class-
room, that is, the description of actors, learning activities, re-
sources and services, may be transformed into a UoL.

However, to support the IMS LD specification is needed to de-
velop two types of tools: IMS LD engines, that coordinate the execu-
tion of the IMS LD activities carried out by the participants of the
UoL; and IMS LD players, that enable students and teachers to ac-
cess to the learning objectives, activities and resources through
an advanced graphical interface. Thus, there are some develop-
ments that represent directly the learning flow execution in a pro-
gramming language (Escobedo del Cid, de la Fuente Valentin,
Gutierrez, Pardo, & Delgado Kloos, 2007; Gaeta, Gaeta, & Ritrovato,
2009; Hagen & Kinshuk, 2006; Molina, Jurado, de la Cruz, Redondo,
& Ortega, 2009; Vogten, 2008). This feature makes these engines
difficult to adapt to potential changes or extensions (Burgos,
2008) to the semantics of the IMS LD specification: a change, even
small, would involves the re-implementation of the engine. Fur-
thermore, as they do not define a computational formal model for
describing the learning flow that coordinates the execution of the
learning activities, it is not possible to check the consistency of
the structural properties and behavior of that learning flow (for
instance, whether it is deadlock-free and liveness). To deal with
these drawbacks, some approaches that translate the IMS LD learn-
ing flow model into a workflow specification language have been
proposed (Takayama, Ghiglione, Wilson, & Dalziel, 2007; Vantroys
& Peter, 2003). However, these workflow languages do not directly
support the evaluation of the structural properties, since they are

0957-4174/$ - see front matter � 2012 Elsevier Ltd. All rights reserved.
http://dx.doi.org/10.1016/j.eswa.2012.05.013

⇑ Corresponding author. Tel.: +34 881813564; fax: +34 981528012.
E-mail addresses: juan.vidal@usc.es (J.C. Vidal), manuel.lama@usc.es (M. Lama),

alberto.bugarin.diz@usc.es (A. Bugarín).

Expert Systems with Applications 39 (2012) 12799–12813

Contents lists available at SciVerse ScienceDirect

Expert Systems with Applications

journal homepage: www.elsevier .com/locate /eswa

http://dx.doi.org/10.1016/j.eswa.2012.05.013
mailto:juan.vidal@usc.es
mailto:manuel.lama@usc.es
mailto:alberto.bugarin.diz@usc.es
http://dx.doi.org/10.1016/j.eswa.2012.05.013
http://www.sciencedirect.com/science/journal/09574174
http://www.elsevier.com/locate/eswa


not based on a formalism that models the execution semantics of
the control branchs. Furthermore, none of the current IMS LD en-
gines support changes to the learning flow at runtime (Burgos, Tat-
tersall, & Koper, 2007), preventing teachers to introduce new
learning activities that are not defined in the UoL design.

In this paper we present an ontology-based and Petri net-based
engine, called OPENET LD, for the execution of UoLs designed fol-
lowing the IMS LD specification. In this engine the IMS LD learning
flow is represented through a set of high-level Petri nets (HLPNs)
(Jensen, 2003) that capture formally the semantics of execution
for each IMS LD component, so that the coordination of the learn-
ing activities is carried out by a Petri net engine (Vidal, Lama, &
Bugarín, 2010). With this strategy we achieve a dual purpose: on
one hand, the semantics of the IMS LD is not implemented in a pro-
gramming language, and therefore to extend the engine with new
IMS LD components means to create a Petri net that models its
behavior. On the other hand, the structure of each Petri net has
been created to verify formally the behavioral properties that are
desirable to guarantee the execution of the learning flow. Further-
more, OPENET4LD has a layered and flexible architecture that use
ontologies to describe both the knowledge for executing HLPNs
and the semantics of the IMS LD components. This architecture
has been validated with 32 UoLs with different structural complex-
ity and adaptive features (level B of IMS LD).

The rest of the paper is organized as follows: Section 2 describes
the IMS LD specification. Section 3 analyzes the main features of
the IMS LD engines of the current state of the art. Section 4 is
the core of the paper, since the Petri net model for representing
IMS LD learning flows is presented. Section 7 presents the valida-
tion of the model from the point of view of verifying the structural
properties of a workflow. Section 6 describes the ontology-based
service-oriented architecture (SOA) of OPENET4LD. Section 8
emphasizes the main advantages of the OPENET4LD when compar-
ing with other IMS LD engines. Finally, Section 9 summarizes the
main achievements of the paper.

2. IMS Learning Design

The IMS LD specification is a metadata standard that describes
all the elements of the design of a teaching–learning process
(IMS Global Learning Consortium, 2003). This specification is based
on: (i) a well-founded conceptual model that defines the vocabulary
and the functional relations between the concepts of the learning
design; (ii) an information model that describes in natural language
the semantics of every concept and relation introduced in the con-
ceptual model; and (iii) a behavioral model that specifies the con-
straints imposed to the software system when a given learning
design is executed in runtime. In other words, the behavioral mod-
el defines the semantics of the IMS LD specification during the exe-
cution phase. Furthermore, the IMS LD specification defines three
levels of implementation depending on whether the learning de-
sign is adaptive or not:

� Level A: This first level defines the main components of a IMS
LD-based UoL: participants (roles), pedagogical objectives,
resources (services and contents), and learning design. This last
component is understood as the description of coordination of
the learning activities to be performed by the participants to
achieve the pedagogical objectives. To describe this learning
design, the IMS LD specification follows a theater metaphor
where it exists a number of plays, that can be interpreted as
the runscripts for the execution of the UoL and that are concur-
rently executed, being independent of each other. Each of these
plays consist of a set of acts, which can be understood as a mod-
ule or chapter in a course.These acts are performed in sequence,

and in each of them the participants in the UoL carry out in par-
allel an activity or a structure of activities, which are executed in
sequence or by selecting a number of them.
� Level B: This level adds properties and conditions to level A. It

also adds monitoring services and global elements which allow
users to create more complex structures. The properties store
information about people (preferences, outcomes, roles, etc.),
personal information, or even about the learning design itself.
Level B also establishes (i) the visibility of the elements of the
learning flow; (ii) if properties are transient or should persist
across multiple sessions; and (iii) the set of operators and
expressions that may transform the value of properties and
the visibility of elements.
� Level C: The last level incorporates notifications to level B. Noti-

fications fire automatically in response to events triggered in
the learning process. For example, if a student submits a job,
the learning flow might automatically send an email to report
the event to the teacher.

Therefore, a learning design can be considered as a learning
workflow (or learning flow) that consists in the execution of a set
of activities carried out by the participants in the UoL. Through a
set of plays and acts the IMS LD specification imposes a given
structure to that define the learning flow. This structure is inde-
pendent of the pedagogical methodology followed in the UoL, but
is particularly suitable to collaborative learning. Taking this into
account, it seems natural to model the semantics of the IMS LD
learning flow through the workflow formalism.

3. Related work

The development of an IMS LD engine is a complex project that
shares many similarities with the implementation of workflow en-
gines, since the design of learning is understood as the coordina-
tion of the activities performed by users (called students and
teachers) in an educational context (in order to achieve their edu-
cational objectives). In addition, the IMS LD specification itself is
very complex when compared with other Educational Modeling
Languages: most of these languages only take in consideration
the activities to be undertaken by students, while IMS LD also
introduces elements of control (plays, acts, role parts, learning
activities and structures of activities) that are restricted to each
other when they are executed (for example, acts of a play are exe-
cuted in sequence). These restrictions determine the implementa-
tion of these elements, and they customize the educational
journey.

Relatively few execution engines have been developed because
of the IMS LD complexity, and some points in the design and
implementation of an engine remains an open issue. In this sense,
making the personalization of the learning unit to the students eas-
ier and, verifying the properties of the workflow to determine, for
example, if there are dead points, or if all states are reachable, are
two of these open issues. With this in mind, we highlight the fol-
lowing execution engines:

� CopperCore (Vogten, 2008) has been developed by the OUNL to
test the viability of the IMS LD specification and is the reference
implementation for IMS LD. It has therefore been used in several
European projects such as TENCompetence or UNFOLD and has
allowed the development of technologies based on IMS LD, as
has been provided for researchers in the development of tools
that have evaluated the specification. Coppercore allows the
execution of IMS LD documents specified in any of its three lev-
els of modeling, and internally translates the IMS LD learning
flow to finite state machines that are interpreted by the Java

12800 J.C. Vidal et al. / Expert Systems with Applications 39 (2012) 12799–12813



Download English Version:

https://daneshyari.com/en/article/387300

Download Persian Version:

https://daneshyari.com/article/387300

Daneshyari.com

https://daneshyari.com/en/article/387300
https://daneshyari.com/article/387300
https://daneshyari.com

