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a b s t r a c t

It is well understood how to compute the average or centroid of a set of numeric values, as well as their
variance. In this way we handle inconsistent measurements of the same property. We wish to solve the
analogous problem on qualitative data: How to compute the ‘‘average” or consensus of a set of affirma-
tions on a non-numeric fact, as reported for instance by different Web sites? What is the most likely truth
among a set of inconsistent assertions about the same attribute?

Given a set (a bag, in fact) of statements about a qualitative feature, this paper provides a method,
based in the theory of confusion, to assess the most plausible value or ‘‘consensus” value. It is the most
likely value to be true, given the information available. We also compute the inconsistency of the bag,
which measures how far apart the testimonies in the bag are. All observers are equally credible, so dif-
ferences arise from perception errors, due to the limited accuracy of the individual findings (the limited
information extracted by the examination method from the observed reality).

Our approach differs from classical logic, which considers a set of assertions to be either consistent
(True, or 1) or inconsistent (False, or 0), and it does not use Fuzzy Logic.

� 2009 Elsevier Ltd. All rights reserved.

1. Previous work and problem statement

Assume several measurements are performed on the same
property (for instance, the length of a table). One measurer some
distance away asserted ‘‘3 m.” Another person with the help of a
meter said ‘‘3.13 m”. A lady with a micrometer reported
‘‘3.1427 m”. From these, it is possible to obtain the most likely va-
lue (l ¼ 3:09 m, the average length) as well as the dispersion of
these measurements (r, the variance), perhaps disregarding some
outliers. For quantitative measurements we know how to take into
account contradicting facts, and we do not regard them necessarily
as inconsistent. We just assume that the observers’ gauges have
different precisions or accuracies.

Let us now consider several asseverations on a single-valued
non-numeric variable (such as the killer is) that ranges on qualitative
values (such as dog, cat, German Shepherd, Schnauzer) that can be
arranged in a hierarchy (Fig. 1). That is, observer 1 reports that the
killer is a dog, observer 2 reports that the killer is a cat . . . Can we find
the consensus value or most likely value for the assassin? The ‘‘cen-
troid” or ‘‘average” of the reported animals?1 Or, we know that Oss-
ama Bin Laden is reported to hide in {Afghanistan; Beirut;

Irak; Kabul; Middle East; Afghanistan; Syria}. What is the most likely
value to be true? Intuitively, this is the value that minimizes the sum
of disagreements or discomforts for all the observers when they learn
of the value chosen as the consensus value.

Section 2 of the paper tells us how to measure the discomfort
that an observer has when using r instead of (his reported value)
s. Section 3 of this paper solves the following:

Problem 1. Given a bag2 of statements reporting non-numeric
values, what is the most plausible value? How can me measure their
inconsistency?

In Problem 1 we assume that all observers are equally credible,
so the discrepancy in observed values is due only to inaccuracy in
observations. Section 4 solves Problem 1 in the presence of nega-
tive findings (negative assertions).

1.1. Previous work

The Plausibility Theory of Dempster–Shafer (Dempster, 1968;
Shafer, 1979) solves Problem 1 assuming that each observer has
a given confidence, that their findings are independent – they do
not influence each other, and that all observers have the same pre-
cision. We assume, instead, that all observers have the same confi-
dence. But, in distinction to Plausibility Theory, the discrepancy in
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the values reported is due to the different methods used to perform
the examinations (observer 1 saw the killer at a distance, observer
2 saw it at night, observer 3 heard it bark . . .).

Logic solves this problem by

(a) Declaring that, since dog – cat – Doberman – � � �, the set is
inconsistent, and the sentence (the killer is a dog) ^ (the
killer is a cat) ^ � � � evaluates to F; no agreement is possible.1

This approach is unacceptable since, in practice, there are
‘‘small” inconsistencies, such as that between ‘‘It is a Dober-
man” and ‘‘It is a Female Doberman”.

(b) Postulating a (small) set of predicates that must all be true
(Byrne & Hunter, 2005) for this set of observations to be con-
sistent, and declaring that the degree of inconsistency of the
set is the percentage of predicates that become false. This is
unacceptable since this set of predicates can be shortened
(by ANDing some of the predicates) or lengthened (by divid-
ing a complex predicate in parts), thus artificially varying the
amount of inconsistency measured. This solution is syntax-
sensitive.

(c) ‘‘Counting the minimal number of formulae needed to pro-
duce the inconsistency in a set of formulae. This idea rejects
the possibility of a more fine-grained inspection of the (con-
tent of the) formulae. In particular, if one looks to singleton
sets only, one is back to problem to the initial problem (a),
with only two values: consistent or inconsistent (Knight,
2001)”.3

(d) ‘‘Looking at the proportion of the language that is touched by
the inconsistency of a set of formulae. This allows us to look
inside the formulae (Konieczny, Lang, & Marquis, 2003)”.3

Disadvantage: two formulae can have different inconsis-
tency measures. It is not sensitive to the syntax of the
formulae.

(e) Measuring inconsistency through minimal inconsistent sets
(Hunter & Konieczny, 2008). Here, subsets that are mini-
mally inconsistent are defined and considered as the ‘‘rele-
vant sets” that measure inconsistency. This approach does
not take into account that often it is possible to perceive
degrees of inconsistency among two logical constants
(Doberman, Dog, Mammal, Iguana). That is, Doberman is
more different (more inconsistent, informally speaking) to
Iguana than to Dog. Function conf of Section 2 quantifies
this.

(f) Using some kind of high-order Logic, such as para-consistent
logic or non-monotonic logic.

Fuzzy Logic does not by itself solve Problem 1. It can be used to
give fuzzy confidence values to observers, and then fall into Plau-
sibility Theory. Or you can assign a fuzzy membership function
to the set Doberman, another fuzzy membership function to the
set Dog, and so on, and then fall into Confusion Theory (Section
2). But, as we shall see (Section 3), Problem 1 can be solved without
resort to Fuzzy Logic.

Our solution uses hierarchies of qualitative values and the con-
fusion conf(r,s), to measure how r� (the yet unknown result) differs
from each of the reported values. Once these measurements are
known, Section 3 finds the r� that minimizes them, and that is
the result. This paper is a summary of (Jiménez, in press).

An important remark is that our solutions to Problems 1 and 1
do not address the full Inconsistency Problem in Belief Revision
(Gärdenfors, 1992). Formulae in a theory (which may or may not
be consistent) can use several constants on several variables (sev-
eral attributes), but we are dealing just with assertions on one
characteristic or attribute (such as who was the killer? or the place
of birth of Juárez).

Solutions (b)–(e) still regard a set of formulae as consistent or
inconsistent, and they try to ascertain, given an inconsistent set,
how many causes or reasons for inconsistency it contains. In some
sense, they measure how much work is needed to make consistent
an inconsistent set. Our solution does not measure the inconsis-
tency of a set by how much work is needed to bring it back to con-
sistency. Instead, it measures the ‘‘intrinsic discrepancies” among
the members of the set.

2. Measuring the confusion among two qualitative values

This section is an extract from our work in Levachkine,
Guzman-Arenas, and de Gyves (2005) and Levachkine and Guz-
man-Arenas (2007). How close are two numeric values v1 and
v2? The answer is jv2 � v1j. How close are two symbolic values
such as cat and dog? The answer comes in a variety of similarity
measures and distances. The hierarchies introduced in Fig. 1 allow
us to define the confusion conf(r,s) on two symbolic values. We as-
sume that the observers of a given fact (such as the killer) share a
set of common vocabulary, best arranged in a hierarchy. This hier-
archy can be regarded as the ‘‘common terminology”4 for the
observers of the bag, their context. Observers reporting in other
bag may share a different context, that is, another hierarchy. The
function conf will open the way to evaluate in Section 3 the incon-
sistency among a bag of symbolic observations.

What is the capital of Germany? Berlin is the correct answer;
Frankfurt is a close miss, Madrid a fair error, and sausage a gross er-
ror. What is closer to a cat, a dog or an orange? Can we measure
these errors and similarities? Can we retrieve objects in a database
that are close to a desired item? Yes, by arranging these symbolic
(that is, non-numeric) values in a hierarchy. More precisely, qual-
itative variables take symbolic values such as cat, orange, California,
Africa. These values can be organized in a hierarchy H, a mathemat-
ical construct among these values. Over H, we can define the func-
tion confusion resulting when using a symbolic value instead of
another.

Definition. For r; s 2 H, the absolute confusion of using r instead
of s, is

CONFðr; rÞ ¼ CONFðr; any ascendant of rÞ ¼ 0;

CONFðr; sÞ ¼ 1þ CONFðr; father ofðsÞÞ:

animal 

vertebrate invertebrate 

reptile mammal amphibian fish bird 

lizard snake iguana dog cat other mammals 

German Shepherd Schnauzer Doberman other dogs 

other reptiles ×

× ×

×

××

× × ×

Fig. 1. A hierarchy of symbolic values. It is a tree where every node is either a
symbolic value or, if it is a set, then its descendants form a partition. Hierarchies
make possible to compute the confusion conf (r; sÞ that results when value r is used
instead of s, the true or intended value. The confusion (Section 2) is the number of
descending links in the path from r to s, divided by the height of the hierarchy. For
instance, conf(dog,Doberman) = 1/4, conf(Doberman, dog) = 0, conf(Dober-
man, German Shepherd) = 1/4, conf(Doberman, iguana) = 2/4, conf(iguana, Dober-
man) = 3/4. conf 2 [0,1]. Refer to Section 2. Values marked with � refer to Section 3.

3 Citations are from Hunter and Konieczny (2008).

4 If the symbolic values become full concepts, it is best to use an ontology instead of
a hierarchy to place them.
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