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ARTICLE INFO ABSTRACT

Keywords: A scanning electron microscope (SEM) is a sophisticated equipment employed for fine imaging of a vari-
Scanning electron microscope ety of surfaces. In this study, prediction models of SEM were constructed by using a generalized regres-
Resolution

sion neural network (GRNN) and genetic algorithm (GA). The SEM components examined include
condenser lens 1 and 2 and objective lens (coarse and fine) referred to as CL1, CL2, OL-Coarse, and
OL-Fine. For a systematic modeling of SEM resolution (R), a face-centered Box-Wilson experiment was
conducted. Two sets of data were collected with or without the adjustment of magnification.
Root-mean-squared prediction error of optimized GRNN models are GA 0.481 and 1.96 x 10" '? for
non-adjusted and adjusted data, respectively. The optimized models demonstrated a much improved
prediction over statistical regression models. The optimized models were used to optimize parameters
particularly under best tuned SEM environment. For the variations in CL2 and OL-Coarse, the highest R
could be achieved at all conditions except a larger CL2 either at smaller or larger OL-Coarse. For the vari-
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ations in CL1 and CL2, the highest R was obtained at all conditions but larger CL2 and smaller CL1.
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1. Introduction

With the development of nanotechnology, sophisticated equip-
ment is demanded to examine in detail fine patterns of processed
films. In the context of integrated circuit fabrication, a scanning
electron microscope (SEM) is typically used to take images of
deposited films or etched patterns. The SEM consisted of many
complex components. Depending on their various combinations,
the SEM resolution varies considerably. There have been many
studies for manufacturing of SEM (Lee, 1993; Mook & Kruit,
1999; Reimer, 1998) Manufacturing SEM requires control and opti-
mization of SEM components such as condenser (or objective) lens
or electron guns. Due to complexities involved in each component
as well as in a series of connected components, however, optimiz-
ing the resolution (R) of SEM has been an extremely difficult task.
Of SEM components, 4 types of condenser and objective lens play a
critical role in determining the R. The R is expected to vary consid-
erably with their configuration. No analytical models that can
accurately predict R with all lens configurations have been re-
ported. This mainly stems from a lack of physics, which relates a
variety of lens configurations to R. An effective alternative to over-
come this difficulty is to use a neural network. The neural network
approach has promisingly been used to model machine process
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(Ezugwu, Fadare, Bonney, Da Silva, & Sales, 2005) or materials pro-
cesses (Chen, Tai, Wang, Deng, & Chen, 2008; Kim, Bae, & Lee,
2006; Kim, Park, Lee, & Han, 2006; Lee et al., 2008; Liau & Huang,
2008). In this study, a prediction model of SEM is constructed by
using a generalized regression neural network (GRNN) (Specht,
1991) and an evolutionary genetic algorithm (GA) (Goldberg,
1989). To our best knowledge, this is the first intelligent model
for predicting SEM characteristics. This is true at least in the con-
text of control of SEM lens. A statistical experiment was utilized
to systematically prepare experimental data. Two sets of data were
collected with and without the control of magnification. The GA
was employed to improve the prediction performance of GRNN.
The constructed model is then compared with statistical regression
models. Various 3D plots generated from an optimized model are
used to assess lens effects on R.

2. Experimental details

The experimental data were collected from SEM equipment.
Schematic SEM equipment is shown in Fig. 1. As shown in Fig. 1,
the SEM consists of many components, including an electron gun,
an anode allignment coil, a condenser lens 1, a sleeve & aperture,
a condenser lens 2, a coarse objective lens, a fine objective lens, a
scanning deflection coils, a stigmator, and a detector. Among them,
those examined in this study include the condenser lens 1 and 2
referred to as CL1 and CL2 respectively, and the fine and coarse
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Fig. 1. Schematic of SEM equipment.

objective lens named OL-Fine, OL-Coarse, respectively. The CL1 pri-
marily takes a role to focusing the electron beam from the elec-
tronic gun. It reduces the diameter of electron beam. The CL2
reduces the diameter more by concentrating again the electron
beam passing the first condenser lens. The OLs are used to adjust
the focus more intensively in consideration of the distance be-
tween the focus and specimen. A high voltage and a working dis-
tance were set to 15 Kv and 10 mm, respectively.

Experimental data were collected according to a Box-Wilson
experiment (Montgomery, 1992). This design was composed of
2* full factorial experiment and eight face-centered center points.
The process parameters and experimental ranges adopted in the
design are shown in Table 1. Apart from these, one experiment cor-
responding to the center design point was included. Therefore, a
total of 25 experiments were conducted. In each experiment, the
R first measured without control of magnification. Then, the other
R was measured by controlling the magnification until an image
was best seen. These two Rs are referred to as “non-adjusted R”
and “adjusted R”, respectively. It should be noted that the experi-
ments were conduced by adjusting from the center design point.
Here, the center point corresponds to the medium values of each
parameter shown in Table 1. The measured R was then quantified
into three categories numerically corresponding to “0”, “0.5”, and
“1". The highest R was set to “1”. The collected data are shown in
Table 2 and these were divided into two groups of training and

Table 1

Experimental SEM parameters and ranges.

Parameters Ranges Units
CL1 0-340 °

CL2 360-1800 °
OL-Coarse 360-1800 °
OL-Fine 360-1800 °

Table 2
Experimental data collected by a Box-Wilson statistical design.

CL1 CL2 OL-Coarse OL-Fine R (non- R

©) °) ) ) adjusted) (adjusted)
1 340 1800 3600 3600 0 1.0
2 340 1800 3600 360 0 0.5
8 340 1800 360 3600 0 0.5
4 340 1800 360 360 0 0.5
5 340 360 3600 3600 0 0.5
6 340 360 3600 360 0 0.5
7 340 360 360 3600 0 1.0
8 340 360 360 360 0 0.5
C 170 1800 1800 1800 0 1
9 0 1800 3600 3600 0 0.5
10 0 1800 3600 360 0 0.5
11 0 1800 360 3600 0 0.5
12 0 1800 360 360 0 0.5
13 0 360 3600 3600 0 0.5
14 0 360 3600 360 0 0.5
15 0 360 360 3600 0 0.5
16 0 360 360 360 0 0.5
1 0 1080 1800 1800 0.5 1
2* 340 1080 1800 1800 0.5 1
3* 170 360 1800 1800 0.5 1
4* 170 1800 1800 1800 0.5 1
5* 170 1080 360 1800 0 1
6* 170 1080 3600 1800 0 1
7* 170 1080 1800 360 1.0 1
8* 170 1080 1800 3600 0.5 1

testing data. As shown in Table 2, the training data consisted of
17 experiments coming from the full factorial experiment and
one center point. The testing data differentiated with the asteroid
mark were composed of the remaining eight experiments.

3. Generalization regression neural network

A GRNN was used to construct a prediction model of R. A sche-
matic of GRNN is shown in Fig. 2. As shown in Fig. 2, the GRNN con-
sists of four layers, including the input layer, pattern layer,
summation layer, and output layer. Each input unit in the first
layer corresponds to individual equipment parameter. The first
layer is fully connected to the second, pattern layer, where each
unit represents a training pattern and its output is a measure of
the distance of the input from the stored patterns. Each pattern
layer unit is connected to the two neurons in the summation layer:
S-summation neuron and D-summation neuron. The S-summation
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Fig. 2. Schematic of generalized regression neural network.
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