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a b s t r a c t

The aim of the study is classification of the electroencephalogram (EEG) signals by combination of the
model-based methods and the least squares support vector machines (LS-SVMs). The LS-SVMs were
implemented for classification of two types of EEG signals (set A – EEG signals recorded from healthy vol-
unteers with eyes open and set E – EEG signals recorded from epilepsy patients during epileptic seizures).
In order to extract the features representing the EEG signals, the spectral analysis of the EEG signals was
performed by using the three model-based methods (Burg autoregressive – AR, moving average – MA,
least squares modified Yule–Walker autoregressive moving average – ARMA methods). The present
research demonstrated that the Burg AR coefficients are the features which well represent the EEG signals
and the LS-SVM trained on these features achieved high classification accuracies.

� 2009 Elsevier Ltd. All rights reserved.

1. Introduction

The electroencephalogram (EEG), a highly complex signal, is
one of the most common sources of information used to study
brain function and neurological disorders (Agarwal, Gotman, Flan-
agan, & Rosenblatt, 1998; Adeli, Zhou, & Dadmehr, 2003; Hazarika,
Chen, Tsoi, & Sergejew, 1997). Large amounts of data are generated
by EEG monitoring systems for electroencephalographic changes,
and their complete visual analysis is not routinely possible. Com-
puters have long been proposed to solve this problem and thus,
automated systems to recognize electroencephalographic changes
have been under study for several years. There is a strong demand
for the development of such automated devices, due to the in-
creased use of prolonged and long-term video EEG recordings for
proper evaluation and treatment of neurological diseases and pre-
vention of the possibility of the analyst missing (or misreading)
information (Agarwal et al., 1998; Adeli et al., 2003; Hazarika
et al., 1997).

Support vector machines (SVMs) proposed by Vapnik (1995) are
trained by solving a quadratic optimization problem. Least squares
support vector machines (LS-SVMs) proposed by Suykens and Van-
dewalle (1999) are trained by solving a set of linear equations. In
the present study, the LS-SVMs were implemented for classifica-
tion of two types of EEG signals (set A – EEG signals recorded from
healthy volunteers with eyes open and set E – EEG signals recorded
from epilepsy patients during epileptic seizures) (Andrzejak et al.,

2001; http://www.meb.uni-bonn.de/epileptologie/science/physik/
eegdata.html). Feature extraction/selection plays an important role
in classifying systems such as neural networks. Therefore, in order
to extract the features representing the EEG signals, the spectral
analysis of the EEG signals was performed by using the three mod-
el-based methods (Burg autoregressive – AR, moving average –
MA, least squares modified Yule–Walker autoregressive moving
average – ARMA methods). The model-based methods (parametric)
are based on modeling the data sequence x(n) as the output of a
linear system characterized by a rational system. In the model-
based methods, the spectrum estimation procedure consists of
two steps. Given the data sequence xðnÞ;0 6 n 6 N � 1, the param-
eters of the method are estimated. Then from these estimates, the
power spectral density (PSD) estimate is computed. The model-
based methods spectra have a good statistical stability for short
segments of signal and have a good spectral resolution and the res-
olution is less dependent on the length of the record (Kay & Marple,
1981; Kay, 1988; Proakis & Manolakis, 1996; Stoica & Moses,
1997). The implemented LS-SVM was trained on the Burg AR coef-
ficients and the high accuracy was achieved in classifying the EEG
signals (sets A and E).

The outline of this study is as follows. In Section 2, brief descrip-
tion of data is presented. In Section 3, brief review of classifiers
(SVMs and LS-SVMs) is given with the related references for fur-
ther reading. In Section 4, computation of the coefficients of the
model-based methods and the results of application of the LS-
SVM trained on the Burg AR coefficients to the EEG signals are pre-
sented. Discussion of the presented results is performed in the light
of existing studies in the literature. Finally, in Section 5 the drawn
conclusions are emphasized.
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2. Description of studied EEG signals

The data described in reference Andrzejak et al. (2001), which is
publicly available (http://www.meb.uni-bonn.de/epileptologie/sci-
ence/physik/eegdata.html) was used. In this section, only a short
description is presented and refer to reference Andrzejak et al.
(2001) for further details. The complete dataset consists of five sets
(denoted A–E), each containing 100 single-channel EEG signals of
23.6 s. Each signal has been selected after visual inspection for arti-
facts and has passed a weak stationarity criterion. Sets A and B have
been taken from surface EEG recordings of five healthy volunteers
with eyes open and closed, respectively. Signals in two sets have
been measured in seizure-free intervals from five patients in the
epileptogenic zone (D) and from the hippocampal formation of
the opposite hemisphere of the brain (C). Set E contains seizure
activity, selected from all recording sites exhibiting ictal activity.
Sets A and B have been recorded extracranially, whereas sets C, D,
and E have been recorded intracranially. In the applications, perfor-
mance degraded for a more detailed classification which further
dissociated between sets A (healthy volunteer, eyes open) and B
(healthy volunteer, eyes closed), and sets D (epileptogenic zone)
and C (hippocampal formation of opposite hemisphere). Therefore,
in the present study two dataset (A and E) of the complete dataset
were classified. The implemented LS-SVM was formulated for two-
class classification problem. The waveforms of the two types of EEG
segments analyzed in the present study are shown in Fig. 1a and b.

3. Brief review of classifiers

3.1. Support vector machines (SVMs)

The SVM proposed by Vapnik (1995) has been studied exten-
sively for classification, regression and density estimation. Fig. 2
shows the architecture of the SVM. SVM maps the input patterns
into a higher dimensional feature space through some nonlinear
mapping chosen a priori. A linear decision surface is then con-
structed in this high dimensional feature space. Thus, SVM is a lin-
ear classifier in the parameter space, but it becomes a nonlinear
classifier as a result of the nonlinear mapping of the space of the
input patterns into the high dimensional feature space. Let m-
dimensional training data be xiði ¼ 1; . . . ;MÞ and their class labels
be yi, where yi ¼ 1 and yi ¼ �1 for classes 1 and 2, respectively.
If these input data are linearly separable in the feature space, then
the following decision function can be determined:

DðxÞ ¼ wtgðxÞ þ b ð1Þ

where g(x) is a mapping function that maps x into the l-dimen-
sional space, w is the l-dimensional vector and b is a scalar. To sep-
arate data linearly, the decision function satisfies the following
condition:

yiðwtgðxiÞ þ bÞP 1 for i ¼ 1; . . . ;M ð2Þ

If the problem is linearly separable in the feature space, there are an
infinite number of decision functions that satisfy Eq. (2). among
them we require that the hyperplane has the largest margin be-
tween two classes. The margin is the minimum distance from the
separating hyperplane to the input data and this is given by
jDðxÞj=kwk. Then we call the separating hyperplane with the maxi-
mum margin optimal separating hyperplane.

Assuming that the margin is q, the following condition needs to
be satisfied:

yiDðxiÞ
kwk P q for i ¼ 1; . . . ;M ð3Þ

The product of q and kwk is fixed:

qkwk ¼ 1 ð4Þ

In order to obtain the optimal separating hyperplane with the max-
imum margin, w with the minimum kwk that satisfying Eq. (3)
should be found. From Eq. (4), this leads to solving the following
optimization problem. Minimizing
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wtw ð5Þ

subject to the constraints:
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Fig. 1. Waveforms of the EEG segments (a) set A, (b) set E.
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Fig. 2. Architecture of the SVM (N is the number of support vectors).
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