Expert Systems with Applications 36 (2009) 12113-12119

journal homepage: www.elsevier.com/locate/eswa

Contents lists available at ScienceDirect

Expert Systems with Applications

x
Expert
Systems
with

Applications 5

An Infemational
Joumal

Effective solution for unhandled exception in decision tree induction algorithms

S. Appavu alias Balamurugan *, Ramasamy Rajaram

Department of Computer Science and Information Technology, Thiagarajar College of Engineering, Thiruparamkundram, Madurai, India

ARTICLE INFO ABSTRACT

Keywords:

Data mining
Classification
Decision tree
Majority voting
Influence factor
Pruning

This paper deals with some improvements to rule induction algorithms in order to resolve the tie that
appear in special cases during the rule generation procedure for specific training data sets. These
improvements are demonstrated by experimental results on various data sets. The tie occurs in decision
tree induction algorithm when the class prediction at a leaf node cannot be determined by majority vot-
ing. When there is a conflict in the leaf node, we need to find the source and the solution to the problem.
In this paper, we propose to calculate the Influence factor for each attribute and an update procedure to

the decision tree has been suggested to deal with the problem and provide subsequent rectification steps.

© 2009 Published by Elsevier Ltd.

1. Introduction

Decision tree is an important classification tool and various
improvements such as ID3 (Quinlan, 1986), ID4 (Utgoff, 1989),
ID5 (Utgoff, 1988), ITI (Utgoff, 1994), C4.5 (Quinlan, 1993) and
CART (Breiman, Friedman, Olsen, & Stone, 1984), over the original
decision tree algorithm have been proposed. All of them deal with
the concept of incrementally building a decision tree in real time.
In decision tree learning, a decision tree is induced from a set of la-
belled training instances represented by a tuple of attribute values
and a class label. Because of the vast search space, decision tree
learning is typically a greedy, top-down recursive process starting
with the entire training data and an empty tree. An attribute that
best partitions the training data is chosen as the splitting attribute
for the root, and the training data are then partitioned into disjoint
subsets satisfying the values of the splitting attribute. For each
subset, the algorithm proceeds recursively until all instances in a
subset belong to the same class. However, prior decision tree algo-
rithms do not handle the exception such as, “when two or more
classes have equal probabilities in a tree leaf”. This paper investi-
gates exception handling in decision tree construction. We exam-
ine one type of exception such as “how to produce classifications
from a leaf node which contains ties”; in such a leaf, each class is
represented equally, preventing the tree from using “majority vot-
ing” to output a classification prediction. We propose new tech-
niques for handling this exception and used real-world data sets
to show that this technique improve classification accuracy. One
of the problem identified in decision tree learning is that there is
a 20% of chance of occurrence of a conflict in a leaf node when ap-
plied to real-world data sets. On analysis it has been found that

* Corresponding author.
E-mail addresses: sbit@tce.edu (S. Appavu alias Balamurugan), rrajaram@tce.edu
(R. Rajaram).

0957-4174/$ - see front matter © 2009 Published by Elsevier Ltd.
doi:10.1016/j.eswa.2009.03.072

when the Influence factor values are calculated, they are equal in
the problem causing node and other nodes in the tree. In the pro-
cess of finding the source of problem, we propagate backwards in
the decision tree until we reach a level wherein the Influence factor
values are different and unique. An update procedure to the deci-
sion tree has been suggested in this paper to deal with the prob-
lem. The paper is organized as follows: Section 2 defines related
works in this area. Section 3 portrays the problem handled in this
paper. Section 4 explains our proposed algorithm. Section 5 illus-
trates our proposed update procedure with an example. Section 6
gives a note of comparison between the traditional classification
algorithms and the proposed method, highlighting its advantages.
Finally, Section 7 summarizes the proposed algorithm and con-
cludes the paper.

2. Related work

Decision tree learning is one of the most widely used and prac-
tical methods for inductive learning. The ID3 algorithm (Quinlan,
1986) is a useful concept-learning algorithm because it can effi-
ciently construct a decision tree that is well generalized. For non-
incremental learning tasks, this algorithm is often an ideal choice
for building a classification rule. However, for incremental learning
tasks, it would be far preferable to accept instances incrementally,
without the necessity to build a new decision tree each time. There
exist several techniques to construct incremental decision tree
based models. Some of the earlier efforts include ID4 (Utgoff,
1989), ID5 (Utgoff, 1988), ID5R (Utgoff, 1989), and ITI (Utgoff,
1994). All these systems work using the ID3 style “information
gain” measure to select the attributes. They are all designed to
incrementally build a decision tree using one training instance at
a time by keeping the necessary statistics (measure for information
gain) at each decision node.


mailto:sbit@tce.edu
mailto:rrajaram@tce.edu
http://www.sciencedirect.com/science/journal/09574174
http://www.elsevier.com/locate/eswa

12114

The ID4 algorithm (Utgoff, 1989) builds decision trees incre-
mentally. Many learning tasks are incremental as new instances
or details become available over time. The ID4 algorithm (Utgoff,
1989) works by building a tree and updating it as new instances
become available. The ID3 algorithm can be used to learn incre-
mentally by adding each new instance to the training set as it be-
comes available and by re-running ID3 against the enlarged
training set. This is however computationally inefficient. The ID5
(Utgoff, 1988) and ID5R (Utgoff, 1989) are both incremental deci-
sion tree builders that overcome the deficiencies of ID4. The essen-
tial difference is that when tree restructuring is required, instead of
discarding a sub tree due to its high entropy, the attribute that is to
be placed at the node is pulled up to the node and the tree struc-
ture below the node is retained. In the case of ID5 (Utgoff, 1988)
the sub trees are not recursively updated while in ID5R (Utgoff,
1989) they are updated recursively. Leaving the sub trees un-
restructured is computationally more efficient. However the
resulting sub tree is not guaranteed to be the same as the one that
would be produced by ID3 on the same training instances. The
Incremental Tree Inducer (ITI) (Utgoff, 1994) is a programme that
constructs decision tree automatically from labelled examples.
The most useful aspect of the ITI algorithm is that it provides a
mechanism for incremental tree induction. If one has already con-
structed a tree, and then obtains a new labelled example, it is pos-
sible to present it to the algorithm, and have the algorithm revise
the tree as necessary. The alternative would be to build a new tree
from the scratch, based on the augmented set of labelled examples,
which is typically much more expensive. ITI handles symbolic vari-
ables, numeric variables, and missing data values. It includes a vir-
tual pruning mechanism too.

The development of decision tree learning leads to and it
encouraged by a growing number of commercial systems such as
C5.0/See5 (RuleQuest Research), MineSet (SGI), and Intelligent
Miner (IBM). Numerous techniques have been developed to speed
up decision tree learning, such as designing a fast tree-growing
algorithm, parallelization, and data partitioning.

A number of strategies for decision tree improvements have
been proposed in the literature (Buntine, 1992; Hartmann, Varsh-
ney, Mehrotra, & Gerberich, 1982; Kohavi & Kunz, 1997; Mickens,
Szummer, Narayanan, & Snitch, 2007; Quinlan, 1987; Utgoff, 2004).
They aim at “tweaking” an already robust model despite its main
obvious limitation. A number of ensemble classifiers have been
proposed in the literature (Chipman, George, and Mcculloch,
1998; Kohavi, 1996; Wang et al., 2004; Zhou and Chen, 2002)
which appear to have little improvement on accuracy especially
when the added complexity of the method is considered.

3. Problem statements

This paper addresses research question in the context of decision
tree induction: which class to choose when, classified with respect
to an attribute, the number of records having the different class val-
ues are equal, i.e. when majority voting fails (see Figs. 1-3).

The set of attributes used to describe an instance is denoted by
A, and the individual attributes are indicated as A;, where i between
1 and the number of attributes, m. For each attribute A;, the set of
possible values is denoted as V;. The individual values are indicated
by v; where j between 1 and the number of values for attributes A;.
The notations used to represent the features of training data are,
the attributes as A;, where j = 1 to m, the class attribute as C the val-
ues to each of the attributes will be V;; where i = 1...n and j refers to
the attribute to which it belongs. The general structure of the train-
ing data set is shown in Table 1.

After analyzing the decision tree induction algorithms, we
found that the concept of majority voting has to handle different

S. Appavu alias Balamurugan, R. Rajaram / Expert Systems with Applications 36 (2009) 12113-12119

types of inputs. Consider the attribute A, between A; and A,;, and
C be the class attribute, the value of A, are V;, and V5, and the va-
lue of the class attribute be C; and C,. Classification can be done if:

1. Both Ag and C has only one distinct values.
2. When most of the attribute value Vi, Var... Vi of particular
attribute Ay belong to same class that is called majority voting.

From Table 2, the maximum occurrence of the distinct value
and its corresponding maximum occurrence of the distinct class la-
bel value is obtained. Hence majority voting is successful.

Consider the training data set is shown in Tables 3 where
majority voting fails.

Under this condition only one rule can be generated as

If Ak = V2k then C = G

In Table 3, the count of the distinct value is 2. Hence two rules
should be generated from the table but only one rule is generated
with the help of majority voting and another rule cannot be
generated

If Ak = V]k then C =7

In Table 3, the value for A, can be found by majority voting as
Ay = Vqi but its corresponding class value cannot be determined be-
cause among the four records there is an equal partition of class
attribute C = C; or C,, hence the majority voting cannot be applied
in this case. The traditional decision tree induction algorithms does
not give any specific solution to handle this problem.

4. The proposed learning algorithm

The Decision tree induction algorithms update procedure to
handle the cases when the concept of majority voting fails in the
leaf node are given in Fig. 2.

5. Implementation of the proposed algorithm

To prove the efficiency of the proposed algorithm we consider
Table 4 used in the problem definition. When the concept of major-
ity voting fails in the leaf node, an exception occurs in the decision
tree induction algorithm. At this point the proposed algorithm is
used.

5.1. Step 1

Divide the training data based on the class label. In this example
the records having the class label ‘Class: Buys_computer = Yes’ are
placed in the Table 5 and the records having the class label value
‘Class: Buys_computer = No’ are placed in the Table 6. The records
1-14 form the training data and the remaining records form the
test data.

5.2. Step 2

Find the influence factor for all the attribute values. The influ-
ence factor gives the dependability of the attribute value on the
class label. The formula for Influence factor for a particular Class
G; is given below

N(4) = “X|C)

Influence factor I(A; = “X,”|C;) = N(C)

where N (A; = “X”|C;) = number of records in which attribute A; hav-
ing the value X, has the class label C;.
N (G) = total number of records in which the class label is C;.



Download English Version:

https://daneshyari.com/en/article/387568

Download Persian Version:

https://daneshyari.com/article/387568

Daneshyari.com


https://daneshyari.com/en/article/387568
https://daneshyari.com/article/387568
https://daneshyari.com

