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a b s t r a c t

Several areas of knowledge are being benefited with the reduction of the computing time by using the
technology of graphics processing units (GPU) and the compute unified device architecture (CUDA) plat-
form. In case of evolutionary algorithms, which are inherently parallel, this technology may be advanta-
geous for running experiments demanding high computing time. In this paper, we provide an
implementation of a co-evolutionary differential evolution (DE) algorithm in C-CUDA for solving min–
max problems. The algorithm was tested on a suite of well-known benchmark optimization problems
and the computing time has been compared with the same algorithm implemented in C. Results demon-
strate that the computing time can significantly be reduced and scalability is improved using C-CUDA. As
far as we know, this is the first implementation of a co-evolutionary DE algorithm in C-CUDA.

� 2011 Elsevier Ltd. All rights reserved.

1. Introduction

In many design tasks in engineering, the designer is interested
in robust optimal solutions. In general, optimal robust design is
formulated as min–max optimization problems. Min–max optimi-
zation problems appear in many areas of science and engineering
(Du & Pardalos, 1995), for instance in game theory, robust optimal
control and many others. Min–max problems are considered diffi-
cult to solve. Hillis (1990), in his pioneering work, proposed a
method for building sorting networks inspired by the co-evolution
of populations. Two independent genetic algorithms (GAs) were
used, whereas one for building sorting networks (host) and the
other for building test cases (parasites). Both GAs evolved simulta-
neously and were coupled through the fitness function.

Previous studies on co-evolutionary algorithms (CEA) have dem-
onstrated the suitability of the approach to solve constrained optimi-
zation problems (Barbosa, 1996, 1999; Krohling & dos Santos Coelho,
2006; Shi & Krohling, 2002; Tahk & Sun, 2000). A constrained
optimization problem is transformed into an unconstrained optimi-
zation problem by introducing Lagrange multipliers and solving the
resultant min–max problem using a CEA.

CEAs usually operate in two or more populations of individuals.
In most CEAs, the fitness of an individual depends not only on the
individual itself but also the individuals of other population. In this

case, the fitness of an individual is evaluated by means of a
competition with the members of the other population (Hillis,
1990; Paredis, 1994; Rosin & Belew, 1995, 1997). Inspired by the
work of Hillis (1990), the co-evolutionary approach has been ex-
tended to solve constrained optimization problems (Barbosa,
1996, 1999; Krohling & dos Santos Coelho, 2006; Shi & Krohling,
2002; Tahk & Sun, 2000). Barbosa (1996, 1999), presented a method
to solve min–max problems by using two independent populations
of GA coupled by a common fitness function. Also, Tahk and Sun
(2000) used a co-evolutionary augmented Lagrangian method to solve
min–max problems by means of two populations of Evolution
Strategies with an annealing scheme. The first population was
made up by the vector of variables and the second one is made
up of the Lagrange multiplier vector. Laskari, Parsopoulos, and
Vrahatis (2002) have also presented a method using Particle Swarm
Optimization (PSO) for solving min–max problems, but not using a
co-evolutionary approach.

Krohling and dos Santos Coelho (2006) proposed a Gaussian
probability distribution to generate the accelerating coefficients
of PSO. Two populations of PSO using Gaussian distribution were
used to solve min–max optimization problems with promising
results. Cramer, Sudhoff, and Zivi (2009) proposed a co-evolution-
ary approach to optimize the design of a ship vessel given a set of
restrictions. The initial problem was transformed to a min–max
and solved by a co-evolutionary GA. Liu, Fernández, Gielen,
Castro-López, and Roca (2009) used a co-evolutionary differential
evolution algorithm to solve the min–max associated with a con-
strained non-linear optimization problem of minimizing the cost
of a analog circuit design given a set of restrictions specified by
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the user. The authors reported that the design specifications were
closely met, even with high constrained requirements, and the
costs successfully reduced.

All these past works showed that co-evolutionary algorithms
are being used with success to solve the min–max associated with
constrained non-linear problems. However, the computational
burden of this approach is considerable: considering two popula-
tions of n individuals each, the number of objective function calls
required to evaluate one of the populations is n2. Each individual
in one population must be evaluated against each individual of
the other. Evaluation of population needs to be performed many
times during the optimization process and is the most relevant
operation regarding computational time. So, even algorithms with
fast convergence (like DE) will suffer from scalability problems if n
is large or the objective function is complex. Previous works have
been done in parallelizing co-evolutionary algorithms (Seredynski
& Zomaya, 2002) but, as far as we know, never in context of co-evo-
lutionary differential evolution algorithms.

The parallelization of the algorithm proposed in this work re-
duces the overhead of population evaluation from n2 sequential
unitary fitness evaluations to n evaluations of n functions at the
same time. This is done by evaluating each individual of one popu-
lation against every other in parallel. This reduces the response
time and enlarges the set of tractable problems using this approach.

In this paper, two populations of independent DE are evolved:
one for the variable vector, and the other for the Lagrange multi-
plier vector. At the end of the optimization process, the first DE
provides the variable vector, and the second DE provides the
Lagrange multiplier vector.

The rest of the paper is organized as follows: in Section 2, the
formulation of the min–max problem is described. The standard
DE is explained in Section 3. Section 4 shows the formulation of
the co-evolutionary DE algorithm. In Section 5, the implementation
of the co-evolutionary DE is presented to solve min–max problems.
Section 6 provides simulation results and comparisons for a min–
max problems and for optimization problems formulated as
min–max problems followed by conclusions and directions for
future research in Section 7.

2. Formulation of constrained optimization problems as min–
max problems

Many problems in various scientific areas and real world appli-
cations can be formulated as constrained optimization problems.
Generally, a constrained optimization problem is defined by:

min
~x2Rn

f ð~xÞ ð1Þ

subject to:

gið~xÞ < 0; i ¼ 1; . . . ;m;

hið~xÞ ¼ 0; i ¼ 1; . . . ; l;

where f ð~xÞ is the objective function, ~x ¼ ½x1; x2; . . . ; xd�T 2 Rd is the
vector of variables, ~gð~xÞ is the vector of inequality constraints, and
~hð~xÞ is the vector of equality constraints.

The set S # Rd designates the search space, which is defined by
the lower and upper bounds of the variables xj and �xj, respectively,
with j = 0, . . . ,d. Points in the search space, which satisfy the equal-
ity and inequality constraints, are feasible candidate solutions.

The Lagrange-based method (Du & Pardalos, 1995) is a classical
approach to formulate constrained optimization problems. By
introducing the Lagrangian formulation, the dual problem associ-
ated with the primal problem (1) can be written as:

max
~l;~k

Lð~x; ~l;~kÞ ð2Þ

subject to:

li > 0; i ¼ 1; . . . ;m;

ki > 0; i ¼ 1; . . . ; l;

where:

Lð~x; ~l;~kÞ ¼ f ð~xÞ þ~lT~gð~xÞ þ~kT~hð~xÞ ð3Þ

and ~l is a m ⁄ 1 multiplier vector for the inequality constraints. The
vector ~k is a l ⁄ 1 multiplier vector for the equality constraints.

If the problem (1) satisfies the convexity conditions over S, then
the solution of the primal problem (1) is the vector~x� of the saddle-
point f~x�; ~l�;~k�g of Lð~x�; ~l�;~k�Þ so that

Lð~x�; ~l;~kÞ 6 Lð~x�; ~l�;~k�Þ 6 Lð~x; ~l�;~k�Þ: ð4Þ

The saddle point can be obtained by minimizing Lð~x�; ~l;~kÞ with
the optimal Lagrange multipliers ð~l�;~k�Þ as a fixed vector of param-
eter. In general, the optimal values of the Lagrange multipliers are
unknown a priori. According to the duality theorem (Du & Parda-
los, 1995), the primal problem (1) subject to the inequality and
equality constraints can be transformed into a dual or min–max
problem.

Solving the min–max problem

min
~x

max
~l;~k

Lð~x; ~l;~kÞ ð5Þ

provides the minimizer ~x� as well as the Lagrange multipliers
ð~l�;~k�Þ. However, for non-convex problems, the solution of the dual
problem does not necessarily coincide with that of the primal prob-
lem. In that case, a penalty term associated with equality and
inequality constraints is added to the Lagrangian function. The aug-
mented Lagrangian is described as in Tahk and Sun (2000).

Lað~x; ~l;~k; rÞ ¼ f ð~xÞ þ
Xm

i¼1

pið~x;li; rÞ þ~kT~hð~xÞ þ r
Xl

i¼1

h2
i ð~xÞ; ð6Þ

where the term pi for the ith inequality constraint is given by

pið~x;li; rÞ ¼
ligið~xÞ þ rg2

i ð~xÞ; if gið~xÞP
li
2r ;

� l2
i

4r ; otherwise

(
ð7Þ

with r being a penalty factor. It can be shown that the solution of
the primal problem and the augmented Lagrangian are identical.
The goal is to find the saddle-point ð~x�; ~l�;~k�Þ. In Section 4, co-evo-
lutionary differential algorithm (CDE) is presented to solve min–
max problems. Next, we provide some background on DE.

3. Differential evolution

The optimization procedure differential evolution (DE) was
introduced in 1997 by Storn and Price (1997). Similar to other
evolutionary algorithms (EAs), it is based on the idea of evolution
of populations of possible candidate solutions, which undergoes
very simple operations of mutation, crossover and selection.

The candidate solutions of the optimization problem in DE are
represented by vectors. The components of the vectors are the
parameters of the optimization problem and the set of vectors
forms the population. The basic idea is the operation to generate
new candidate solutions by means of a weighted difference
between two vectors of the population, to which is added a third
vector. All the three vectors of the population are chosen randomly.
The new created vector is the trial vector. If the fitness of the trial
vector is better than the fitness of a pre-chosen vector, denomi-
nated target vector, then the target vector of the population is
replaced by the trial vector. Unless stated otherwise, in our study,
we are considering minimization problems. Therefore, the higher
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