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ARTICLE INFO ABSTRACT

The investigation of damage propagation mechanisms on a selected safety-critical component or struc-
ture requires the quantification of its remaining useful life (RUL) to verify until when it can continue per-
forming the required function. In this work, a relevance vector machine (RVM), that is a Bayesian
elaboration of support vector machine (SVM), automatically selects a low number of significant basis
functions, called relevant vectors (RVs), for degradation model identification, degradation state regres-
sion and RUL estimation. In particular, RVM capabilities are exploited to provide estimates of the RUL
of a component undergoing crack growth, within an original combination of data-driven and model-
based approaches to prognostics. The application to a case study shows that the proposed approach com-
pares well to other methods (the model-based Bayesian approach of particle filtering and the data-driven
fuzzy similarity-based approach) with respect to computational demand, data requirements, accuracy
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and that its Bayesian setting allows representing and propagating the uncertainty in the estimates.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction
1.1. Motivation

Equipment degradation and unexpected failures impact the
three key elements of production competitiveness, i.e., safety, cost
and quality. In safety-critical applications, e.g., those of the aero-
space, process and nuclear industries, it is even more important
to rely upon well-maintained components in order to reduce
downtime for the sake of plant safety and overall performance effi-
ciency. Since often machines go through degradation before failure,
monitoring and predicting the trend of their degradation and con-
dition may allow correction before failure.

Indeed, when the conditions of a component or structure can be
monitored, maintenance can be planned dynamically (Marseguer-
ra, Zio, & Podofillini, 2002; Williams, Davies, & Drake, 1994). By
predicting the future evolution of the degradation state of the com-
ponent or structure, it is possible to verify whether it can continue
performing the required function and, in case it cannot, estimate
the remaining useful life (RUL), i.e., the time remaining before it
can no longer perform its function (Jardine, Lin, & Banjevic,
2006). In practice, the estimate of the RUL may be difficult to ob-
tain because the degradation state may not be directly observable
and/or the measurements may be affected by noise and
disturbances.
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Approaches to prognostics for failure prediction can be catego-
rized broadly into model-based and data-driven (Chiang, Russel, &
Braatz, 2001).

1.2. Model-based approaches

Model-based prognostics attempts to set up physical models of
the component or structure for the estimation of the RUL. Uncer-
tainty due to the assumptions and simplifications of the adopted
models may pose limitations to this approach. Many researchers
have focused on the problem of building exhaustive models of
deteriorating components and structures to implement model-
based prognostic tools. Markov and semi-Markov models have
been widely exploited for achieving analytical results (Baruah &
Chinnam, 2005; Bérenguer, Grall, & Castanier, 2000; Dong & He,
2007; Grall, Bérenguer, & Chu, 1998; Hontelez, Burger, & Wijnma-
len, 1996; Kopnov, 1999; Lam & Yeh, 1994; Samanta, Vesely, Hsu,
& Subudly, 1991; Yeh, 1997). On the basis of these models, several
approaches have been proposed to analyze reliability-based and
condition-based maintenance policies (Castanier, Bérenguer, &
Grall, 2002; Chen & Trivedi, 2005; Pulkkinen & Uryas’ev, 1992;
Vlok, Coetzee, Banjevic, Jardine, & Makis, 2002).

The most promising approaches rely on Bayesian methods to
combine a prior distribution of the unknown degradation states
with the likelihood of the observations collected, to build a poster-
ior distribution (Caesarendra, Niu, & Yang, 2010; Doucet, 1998;
Doucet, de Freitas, & Gordon, 2001). In this setting, the estimation
method most frequently used in practice is the Kalman filter,
which is optimal for linear state space models and independent,


http://dx.doi.org/10.1016/j.eswa.2012.02.199
mailto:enrico.zio@ecp.fr
mailto:enrico.zio@supelec.fr
mailto:enrico.zio@ polimi.it
mailto:enrico.zio@ polimi.it
mailto:f.dimaio@mail.polimi.it
http://dx.doi.org/10.1016/j.eswa.2012.02.199
http://www.sciencedirect.com/science/journal/09574174
http://www.elsevier.com/locate/eswa

10682

additive Gaussian noises (Anderson & Moore, 1979). In this case,
the posterior distributions are also Gaussian and computed ex-
actly, without approximations. However, in most realistic cases
the dynamics of degradation is non linear and/or the associated
noises are non-Gaussian. Various approximate methods can be
proposed to tackle these cases, e.g., the analytical approximations
of the extended Kalman (EKF) and the Gaussian-sum filters and
the numerical approximations of the grid-based filters (Anderson
& Moore, 1979). Recently, Monte Carlo sampling methods are gain-
ing popularity for their flexibility and ease of design (Kitagawa,
1987). These methods go under the name of particle filtering be-
cause the continuous distributions of interest are approximated
by a discrete set of weighed particles, where each particle repre-
sents a random trajectory of evolution in the state space and the
weight is the probability of the trajectory (Cadini, Zio, & Avram,
2009; Djuric et al., 2003; Doucet, Godsill, & Andreu, 2000).

1.3. Data-driven approaches

Data-driven techniques utilize monitored operational data re-
lated to system health. They can be beneficial when understanding
of first principles of system operation is not straightforward or
when the system is so complex that developing an accurate model
is prohibitively expensive.

Data-driven techniques can be divided into two categories: sta-
tistical techniques (regression methods, ARMA models, etc.) and
artificial intelligence (AI) techniques (neural networks (NNs), fuzzy
systems (FSs), etc.). The most direct data-driven techniques for RUL
estimation attempts at fitting available data of component or
structure degradation by regression models and then extrapolating
the evolution up to failure. However, in practice, the component or
structure degradation history available may be short and incom-
plete, and extrapolation may lead to large errors (Yan, Kog, & Lee,
2004).

With respect to Al techniques, the most commonly used predic-
tion methods are based on NNs (Barlett & Uhrig, 1992; Peel, 2008;
Santosh, Srivastava, Sanyasi Rao, Gosh, & Kushwaha, 2009). For
prognostic tasks, promising methods are recurrent NNs (Camp-
olucci, Uncini, Piazza, & Rao, 1999; More & Deo, 2003), Neuro-Fuz-
zy systems (Tran, Yang, & Tan, 2009; Wang, Goldnaraghi, & Ismail,
2004) and support vector machines (SVMs) Sotiris & Pecht, 2007. In
spite of the recognized potential of empirical, data-driven tech-
niques, limitations still exist for their use in safety-critical applica-
tions, e.g.,, in nuclear technology, because of the lack of a
systematic approach for selecting the structure and parameters
of the models and their black-box character which limits intuition
with respect to the understanding of their performance (Wang, Yu,
Siegel, & Lee, 2008).

1.4. A combined model-based and data-driven approach

In the attempt to benefit from specific advantages of data-
driven and model-based approaches, in this paper we propose a
novel approach which combines relevance vector machine (RVM)
and model fitting.

RVM is a Bayesian framework, of same functional form as SVM
(Drucker, Burges, Kaufman, Smola, & Vapnik, 1997), for obtaining
sparse solutions to regression and classification tasks utilizing
models linear in the parameters (Fletcher, 2008; Tipping, 2001).
The key feature is that it offers good generalization performance
through sparse predictors, which contain relatively few non-zero
basis functions, the so called relevant vectors (RVs). The majority
of parameters are automatically set to zero during the learning
process, giving a procedure that is extremely effective at discerning
those basis functions which are relevant for making good predic-
tions and avoiding over-fitting (Tipping, 2001). Then, a model is
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fitted to the selected RVs, to anticipate operational conditions
and predict the future states of the process under study. In the case
of interest in this work, this modeling scheme is used to provide
estimates of the RUL of a component or structure undergoing
degradation.

The combined approach has the potential to improve conven-
tional methods, which are either purely data-driven methods not
incorporating any physics of the process into the computation or
solely model-based approaches which cannot accommodate for
un-modeled effects and can diverge quickly in the presence of
unanticipated operating conditions. Furthermore, the Bayesian ap-
proach underpinning RVM is well suited to handle uncertainty
since it stands on probability distributions over both parameters
and variables, and integrates out the nuisance terms (Caesarendra,
Widodo, & Yang, 2010; Fletcher, 2008; Tipping, 2001).

The applicative focus of the present paper is the estimation of
the RUL of an equipment subject to a non-linear fatigue crack
growth process, typical for a certain class of industrial and struc-
tural components (Bolotin, Babkin, & Belousov, 1998; Myotyri, Pul-
kkinen, & Simola, 2006; Oswald & Schueller, 1984; Sobezyk &
Spencer, 1992), on the basis of measurements of its degradation
state taken at predefined inspection times (which are likely to be
only few in practice due to the fact that the lower the number of
measurements, the lower the computational time and the cost
associated to the inspection procedures).

The paper contents are structured as follows. Section 2 contains
the description of the approach at the basis of the RUL estimation,
with an overview of the RVM framework. Section 3 presents the
dynamic model of fatigue crack growth. In Section 4, the results
of the application of the approach to a case study are presented,
and an evaluation of the performance evaluation of the prognostic
algorithm is given. Finally, some conclusions on the advantages
and limitations of the approach here propounded are given in Sec-
tion 5.

2. Methodology

Starting from time t =1 throughout the time horizon of obser-
vation T, it is assumed that | successive measurements fj,
j=1,2,...,] are taken at predefined inspection times T; along a deg-
radation-to-failure trajectory developing in the component or
structure under analysis. At each Tj, the RUL estimation for the
degrading component or structure is performed by resorting to a
combination of RVM followed by model fitting and parameter esti-
mation onto the identified RVs. Figs. 1 and 2 show a schematic
sketch and a pseudocode of the novel computational framework,
with reference to degradation signal f(t), respectively.

2.1. Data collection

The first step consists in extracting the feature f(t) from sensor
data. For simplicity of illustration, we consider a single feature as
the degradation signal used for estimating the component evolu-
tion towards failure.

2.2. Degradation model development

The degradation signal f(t) is monitored throughout the time
horizon of observation T, starting from (discrete) time t = 1; inspec-
tions of the component or structure degradation state, as indicated
by signal f(t), are made at predefined inspection times
(T1,Ty,Ts,...,T)), where, computationally, T; — T;_; = n is the number
of discrete time steps between two successive inspections.

At each inspection time Tj, j = 1,2,...,], the last value f{(T;) is re-
corded and appended to the vector of the values collected at the
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