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a b s t r a c t

We aimed to compare the performance of Cox regression analysis (CRA) and Bayesian survival analysis
(BSA) by using simulations and breast cancer data.

Simulation study was carried out with two different algorithms that were informative and noninforma-
tive priors. Moreover, in a real data set application, breast cancer data set related to disease-free survival
(DFS) that was obtained from 423 breast cancer patients diagnosed between 1998 and 2007 was used.

In the simulation application, it was observed that BSA with noninformative priors and CRA methods
showed similar performances in point of convergence to simulation parameter. In the informative priors’
simulation application, BSA with proper informative prior showed a good performance with too little
bias. It was found out that the bias of BSA increased while priors were becoming distant from reliability
in all sample sizes. In addition, BSA obtained predictions with more little bias and standard error than the
CRA in both small and big samples in the light of proper priors.

In the breast cancer data set, age, tumor size, hormonal therapy, and axillary nodal status were found
statistically significant prognostic factors for DFS in stepwise CRA and BSA with informative and nonin-
formative priors. Furthermore, standard errors of predictions in BSA with informative priors were
observed slightly.

As a result, BSA showed better performance than CRA, when subjective data analysis was performed by
considering expert opinions and historical knowledge about parameters. Consequently, BSA should be
preferred in existence of reliable informative priors, in the contrast cases, CRA should be preferred.

� 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Survival analysis is a family of statistical procedures for data
analysis for which the outcome variable of interest is time until an
event occurs. Most popular of survival procedures is Cox regression
analysis (CRA). Because it is a semiparametric and a method for
investigating the effect of several variables upon the time a specified
event takes to happen (Kleinbaum & Klein, 1996). But over the last
few years there has been increased interest shown in the application
of survival analysis based on Bayesian methodology. Researchers
did not use Bayesian analysis frequently in medical studies because
it has a complex theory. Bayesian analysis of survival data has re-
ceived much recent attention due to advances in computational
and modeling techniques (Ibrahim, Chen, & Sinha, 2001).

Bayesian survival analysis (BSA) provides inferences that are ex-
act, while CRA bases maximum likelihood estimations of parame-
ters on asymptotic considerations (Calle, Hough, Curia, & Gómez,
2006; SAS Institute, 2006).

BSA consists of data and prior information. It generates conclu-
sions based on the synthesis of new information from an observed
data and historical knowledge or expert opinion. Historical knowl-
edge from past similar studies can be very helpful in interpreting
the results of the current study. Therefore, BSA reflects researches’
subjective beliefs. Prior elicitation plays the most crucial role in
BSA. BSA cannot be used for any modeling without using a prior
distribution (Ibrahim et al., 2001; SAS Institute, 2006).

Recently, few works have been published on the BSA method.
Yin and Ibrahim (2006) analyzed a simulation study using BSA for
varying sample sizes, 1000 replications, 5000 Gibbs samples and
200 burn-in samples and a real data set from a melanoma clinical
trial. Calle et al. (2006) analyzed data from sensory shelf-life stud-
ies. Wong, Lam, and Lo (2005) used BSA to investigate the effective-
ness of silver diamine fluoride and sodium fluoride varnish in
arresting active dentin caries in Chinese pre-school children.

The purpose of this study was to compare performances of CRA
and BSA under varying sample sizes using Monte Carlo simulation
and to apply CRA and BSA for disease-free survival (DFS) in breast
cancer patients.
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2. Material and methods

2.1. Cox regression analysis

The CRA is the most general of the regression models because it
is not based on any assumptions concerning the nature or shape of
the underlying survival distribution (Ahmed, Vos, & Holbert, 2007).
The CRA is the most widely used method of survival analysis.

Survival analysis typically examines the relationship of the sur-
vival distribution to covariates. Most commonly, this examination
entails the specification of a linear-like model for the log hazard.
The Cox model may be written as

hðt; xÞ ¼ h0ðtÞeb0x

where x is the covariate vector, b is the unknown parameter vector
and h0(t) is called the baseline hazard (it is the hazard for the
respective individual when all independent variable values are
equal to zero). h(t,x) denotes the resultant hazard, given the values
of the covariates for the respective case and the respective survival
time (t). This method uses the partial likelihood to estimate the
parameters, and parameter estimates in the method are obtained
by maximizing partial likelihood function. The partial likelihood is
given by

LðbÞ ¼
Yk

i¼1

expðb0xðiÞÞP
I2RðtðiÞ Þ

expðb0x1Þ

where the summation in the denominator is the over all subjects in
the risk set at time t(i), denoted by R(t(i)), the product is over the k
distinct ordered survival times and x(i) denotes the value of the
covariate for the subject with ordered survival time t(i) (Hosmer &
Lemeshow, 1999; Kleinbaum & Klein, 1996).

The CRA has two assumptions, while no assumptions are made
about the shape of the underlying hazard function. First, they spec-
ify a multiplicative relationship between the underlying hazard
function and the log-linear function of the covariates. The second
assumption is that there is a log-linear relationship between the
independent variables and the underlying hazard function (Hos-
mer & Lemeshow, 1999; Kleinbaum & Klein, 1996).

2.2. Bayesian survival analysis

Bayesian analysis generates conclusions based on the synthesis
of new information from the observed data and previous knowl-
edge or external evidence (Wong et al., 2005).

In classical approaches such as maximum likelihood, inference
is based on the likelihood of the data alone. In Bayesian models,
the likelihood of the observed data x given parameters b, denoted
as p(xjb) or equivalently L(b), is used to modify the prior beliefs
p(b), with the updated knowledge summarized in a posterior den-
sity, p(bjx). The relationship between these densities is:

pðbjxÞ / LðbÞpðbÞ

Thus, updated beliefs are a function of prior knowledge and the
sample data evidence. From the Bayesian perspective the likelihood
is viewed as a function of b given fixed data x, and so elements in
the likelihood which are not functions of b become part of the pro-
portionality in this equation. L(b) is the partial likelihood function
with regression coefficients b as parameters (Congdon, 2003,
2006; Ibrahim et al., 2001; SAS Institute, 2006).

In complex models, posterior densities can often be too difficult
to work with directly. To update knowledge about the parameters
requires that one can sample from the posterior density. With Mar-
kov Chain Monte Carlo (MCMC) method, it is possible to generate
samples from a posterior density and to use these samples to
approximate expectations of quantities of interest. MCMC method

samples successively from a target distribution, with each sample
drawn depending on the previous one. Gibbs sampler is a MCMC
method, and a very powerful simulation algorithm. Gibbs sampler
can be efficient when the parameters are not highly dependent on
each other and the full conditional distributions are easy to sample
from SAS Institute (2006) and Robert and Casella (2004).

Gibbs sampler works as follows (Ibrahim et al., 2001; Robert &
Casella, 2004; SAS Institute, 2006):

1. Set m = 0(m = 1,2, . . . ,M), and choose an arbitrary initial value of
bð0Þ ¼ fbð0Þ1 ; bð0Þ2 ; . . . bð0Þp g

0.
2. Generate each component of bðmþ1Þ ¼ fbðmþ1Þ

1 ; bðmþ1Þ
2 ; . . . bðmþ1Þ

p g0

as follows:
� Draw bðmþ1Þ

1 from pðb1jb
ðmÞ
2 ; . . . ; bðmÞp ; xÞ

� Draw bðmþ1Þ
2 from pðb2jb

ðmþ1Þ
2 ; bðmÞ3 . . . ; bðmÞp ; xÞ

� � � � � � � � � �
� Draw bðmþ1Þ

p from pðbpjb
ðmþ1Þ
1 ; bðmþ1Þ

2 . . . ; bðmþ1Þ
p�1 ; xÞ

3. Set m = m + 1 and go to step 1.

Convergence diagnostics help to resolve whether the Markov
chain has reached its stationary. Many diagnostic tests (Gelman–
Rubin, Geweke, autocorrelation and so forth) are designed to verify
a necessary but not sufficient condition for convergence. With
some models, certain parameters can appear to have very good
convergence behavior, but that could be misleading due to the
slow convergence of other parameters. If some of the parameters
have bad mixing, posterior inference for parameters is failed
(Congdon, 2003; SAS Institute, 2006).

In Bayesian analysis, prior elicitation plays the most crucial role.
Bayesian analysis cannot be used for any modeling without using a
prior distribution. Bayesian analysis is used to noninformative
(objective) or informative (subjective) prior in inference. Informa-
tive prior is obtained from previous studies, past experiences or ex-
pert opinions. It is not dominated by the likelihood and has an
impact on the posterior distribution. Sometimes there is no prior
information about any of the model parameters, and what is often
referred to as noninformative prior density is used. Noninformative
prior has minimal impact on the posterior distribution of b, and can
lead to improper posteriors. However, while noninformative prior
is very popular in some applications, it is not always easy to con-
struct (Gelman, 2002a; Gelman, 2002b; SAS Institute, 2006).

2.3. Simulation algorithms

Our interest in this study was to compare the parameter esti-
mates from CRA and BSA in different conditions. The models devel-
oped here have the same multiplicative structure as the Cox
regression model. We used two different simulation algorithms
for analyses. The probability models with one explanatory variable
were used in simulations and the following steps were applied to
carry out the simulations.

Algorithm I:
We compared CRA and BSA with noninformative prior in this

algorithm.

(1) Set up a value of the parameter b.
(2) Set up a value of the sample size.
(3) Set up a value of the baseline hazard function (h0(t)).
(4) The variable E was generated from exponential distribution,

E � Exponential (1).
(5) The explanatory variable was generated from uniform distri-

bution with (0,1) parameters.
(6) Survival time ðt ¼ E=h0ðtÞeb0xÞ (Bender, Augustin, & Blettner,

2005) was generated by using values obtained in steps 1–5.
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