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The Liquid State Machine (LSM) is a method of computing with temporal neurons, which can be used
amongst other things for classifying intrinsically temporal data directly unlike standard artificial neural
networks. It has also been put forward as a natural model of certain kinds of brain functions. There are
two results in this paper: (1) We show that the Liquid State Machines as normally defined cannot serve
as a natural model for brain function. This is because they are very vulnerable to failures in parts of the
model. This result is in contrast to work by Maass et al. which showed that these models are robust to

noise in the input data. (2) We show that specifying certain kinds of topological constraints (such as
“small world assumption”), which have been claimed are reasonably plausible biologically, can restore
robustness in this sense to LSMs.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Processing in artificial neurons typically is a-temporal. This is
because the underlying basic neuronal model, that of Pitts and
McCulloch (1943) is a-temporal by nature. As a result, most appli-
cations of artificial neural networks are related in one way or an-
other to static pattern recognition. On the other hand, it has long
been recognized in the brain science community that the McCul-
lough-Pitts paradigm is inadequate. Various models of differing
complexity have been promulgated to explain the temporal capa-
bilities (amongst other things) of natural neurons and neuronal
networks.

However, during the last decade, computational scientists have
begun to pay attention to this issue from the neurocomputation
perspective as well, e.g. Fern and Sojakka (n.d.), Jaeger (2001a,
2001b, 2002), Lukosevicius and Jaeger (2009) and Maass,
Natschldger, and Markram (2002a, 2002b, 2002d), and investiga-
tions as to the computational capabilities of various models are
being investigated.

One such model, the Liquid State Machine (LSM) (see Fig. 1)
(Maass et al., 2002a), has had substantial success recently. The
Liquid State Machine is a somewhat different paradigm of compu-
tation. It assumes that information is stored, not in “attractors” as
is usually assumed in recurrent neural networks, but in the activity
pattern of all the neurons which feed-back in a sufficiently recur-
rent and inter-connected network. This information can then be
recognized by any sufficiently strong classifier such as an Adaline
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(Widrow & Hoff, 1960), Back-Propagation, SVM' or Tempotron
(Gutig & Sompolinsky, 2006). (The name “liquid state” comes from
the idea that the history of, e.g. timings of rocks thrown into a pond
of water, is completely contained in the wave structure.) Moreover,
the “persistence of the trace” (or as Maass put it, the “fading
memory” (Lukosevicius & Jaeger, 2009)) allows one to recognize at
a temporal distance the signal that was sent to the liquid; and
sequence and timing effects of inputs.

The Liquid State Machine is a recurrent neural network. In its
usual format (Lukosevicius & Jaeger, 2009; Maass et al., 2002a),
each neuron is a biologically inspired artificial neuron such as an
“integrate and fire” (LIF) neuron or an “Izhikevich” style neuron
(Izhikevich, 2003). The connections between neurons define the
dynamical process, and the recurrence connections define what
we call the “topology” in this paper. The properties of the artificial
neurons, together with these recurrences, results in any sequence
of history input being transformed into a spatio-temporal pattern
activation of the liquid. The nomenclature comes from the fact that
one can intuitively look at the network as if it was a “liquid” such
as a pond of water, the stimuli are rocks thrown into the water, and
the ripples on the pond are the spatio-temporal pattern.

In the context of LSM the “detectors” are classifier systems that
receive as input a state (or in large systems a sample of the ele-
ments of the liquid) and are trained to recognize patterns that
evolve from a given class of inputs. Thus a detector could be a
SVM or an Adaline (Widrow & Hoff, 1960), perceptron (Pitts &
McCulloch, 1943), or three level back propagation neural networks,
etc.

1 SVM = support vector machine.
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Fig. 1. Liquid State Machine framework.

The term detector is standard in the LSM community and date
back to Maass et al. (Jaeger, 2001a; Lukosevicius & Jaeger, 2009;
Maass, 2002; Maass & Markram, 2004; Maass et al., 2002b) the
idea is that the “detectors” are testing whether the information
for classification resides in the liquid; and thus are not required
to be biological. In this way, it is theoretically possible for the
detectors to recognize any spatio-temporal signal that has been
fed into the liquid; and thus the system could be used for, e.g.
speech recognition, or vision, etc.

This is an exciting idea and, e.g. Maass and his colleagues have
published a series of papers on it. Amongst other things, they have
recently shown that once a detector has been sufficiently trained at
any time frame, it is resilient to noise in the input data and thus it
can be used successfully for generalization (Bassett & Bullmore,
2006; Fern & Sojakka, n.d.; Maass et al., 2002b).

Furthermore, there is a claim that this abstraction is faithful to
the potential capabilities of the natural neurons and thus is explan-
atory to some extent from the viewpoint of computational brain
science. Note that one of the underlying assumptions is that the
detector works without memory; that is the detector should be
able to classify based on instantaneous static information; i.e. by
sampling the liquid at a specific time. That this is theoretically pos-
sible is the result of looking at the dynamical system of the liquid
and noting that it is sufficient to cause the divergence of the two
classes in the space of activation.

Note that the detector systems (e.g. a back propagation neural
network, a perceptron or a support vector machine (SVM)) are
not required to have any biological plausibility; either in their de-
sign or in their training mechanism, since the model does not try to
account for the way the information is used in nature. Despite this,
since natural neurons exist in a biological and hence noisy environ-
ment, for these models to be successful in this domain, they must
be robust to various kinds of noise. As mentioned above, Maass et
al. (Lukosevicius & Jaeger, 2009; Maass, Legenstein, & Markram,
2002; Maass et al., 2002b; Maass & Markram, 2004) addressed
one dimension of this problem by showing that the systems are
in fact robust to noise in the input. Thus small random shifts in a
temporal input pattern will not affect the LSM’s ability to recognize
the pattern. From a machine learning perspective, this means that
the model is capable of generalization.

However, there is another component to robustness; that of the
components of the system itself.

In this paper we report on experiments performed with various
kinds of “damage” to the LSM and unfortunately have shown that
the LSM with any of the above detectors is not resistant, in the

sense that small damages to the LSM neurons reduce the trained
classifiers dramatically, even to essentially random values (Hazan
& Manevitz, 2010; Manevitz & Hazan, 2010).

Seeking to correct this problem, we experimented with differ-
ent architectures of the liquid. The essential need of the LSM is that
there should be sufficient recurrent connections so that on the one
hand, the network maintains the information in a signal, while on
the other hand it separates different signals. The models typically
used are random connections; or those random with a bias to-
wards “nearby” connections. Our experiments with these topolo-
gies show that the network is very sensitive to damage because
the recurrent nature of the system causes substantial feedback.

Taking this as a clue, we tried networks with “hub” or “small
world” (Albert & Barabdsi, 2000; Barabasi, 2000; Barabasi & Albert,
1999) architecture. This architecture has been claimed (Achard,
Salvador, Whitcher, Suckling, & Bullmore, 2006; Bassett &
Bullmore, 2006; Varshney, Chen, Paniagua, Hall, & Chklovskii,
2011) to be “biologically feasible”.

The intuition was that the hub topology, on the one hand, inte-
grates information from many locations and so is resilient to dam-
age in some of them; and on the other hand, since such hubs follow
a power rule distribution, they are rare enough that damage usu-
ally does not affect them directly. This intuition was in fact borne
out by our experiments.

2. Materials and methods

We simulated the Liquid State Machine with 243 integrate and
fire neurons (LIF) in the liquid following the exact set up of Maass
and using the code available at the Maass laboratory software “A
neural Circuit SIMulator”.? To test variants of topology we re-
implemented the code, available at our website.> The variants of
the topologies implemented are described in the paper below as
are the types of damages. Input to the liquid was at 30% of the neu-
rons, the same input at all locations in a given time instances. The
detectors of the basic networks were back propagation networks
with three levels with 3 neurons in the hidden level and one output
neuron. [n most experiments, the input was given by the output of
all non-input neurons of the liquid (i.e. 170 inputs to the detector).
In some experiments (see section below) the inputs to the detector
were given over 20 time instances and so the detector had 3400

2 http://www.Ism.tugraz.at/csim/.
3 http://www.cri.haifa.ac.il/neurocomputation.
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