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a b s t r a c t

In the framework of functional gradient descent/ascent, this paper proposes Quantile Boost (QBoost)
algorithms which predict quantiles of the interested response for regression and binary classification.
Quantile Boost Regression performs gradient descent in functional space to minimize the objective
function used by quantile regression (QReg). In the classification scenario, the class label is defined via
a hidden variable, and the quantiles of the class label are estimated by fitting the corresponding quantiles
of the hidden variable. An equivalent form of the definition of quantile is introduced, whose smoothed
version is employed as the objective function, and then maximized by functional gradient ascent to
obtain the Quantile Boost Classification algorithm. Extensive experimentation and detailed analysis show
that QBoost performs better than the original QReg and other alternatives for regression and binary
classification. Furthermore, QBoost is capable of solving problems in high dimensional space and is more
robust to noisy predictors.

� 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Classical least square regression aims to estimate the condi-
tional expectation of the response Y given the predictor (vector)
x, i.e., E(Y|x). However, the mean value (or the conditional expecta-
tion) is sensitive to the outliers of the data (Koenker, 2005). There-
fore, if the data is not homogeneously distributed, we expect the
traditional least square regression to give us a poor prediction.

The sth quantile of a distribution is defined as the value such
that there is 100s% of mass on its left side. Compared to the mean
value, quantiles are more robust to outliers (Koenker, 2005). Let I(�)
be the indicator function with I(�) = 1 if the condition is true, other-
wise I(�) = 0. Let Qs(Y) be the sth quantile of random variable Y. It
can be proved (Hunter & Lange, 2000) that

QsðYÞ ¼ arg min
c

EY ½qsðY � cÞ�;

where qs(r) is the ‘‘check function’’ (Koenker, 2005) defined by

qsðrÞ ¼ rIðr P 0Þ � ð1� sÞr: ð1Þ

Given training data {(xi, Yi), i = 1, . . . , n}, with predictor vector
xi e Rd and response Yi e R, let the sth conditional quantile of Y
given x be f(x). Similar to the least square regression, quantile
regression (QReg) (Koenker, 2005; Koenker & Bassett, 1978) aims
at estimating the conditional quantiles of the response given a
predictor vector x and can be formulated as

f �ð�Þ ¼ arg min
f

1
n

Xn

i¼1

qsðYi � f ðxiÞÞ: ð2Þ

Compared to least square regression, quantile regression is ro-
bust to outliers in observations, and can give a more complete view
of the relationship between predictor and response. Furthermore,
least square regression implicitly assumes normally distributed er-
rors, while such an assumption is not necessary in quantile regres-
sion. Since being introduced in Koenker and Bassett (1978),
quantile regression has become a popular and effective approach
to statistical analysis with wide applications in economics
(Hendricks & Koenker, 1992; Koenker & Hallock, 2001), survival
analysis (Koenker & Geling, 2001), and ecology (Cade & Noon,
2003), to name a few.

The quantile regression model in Eq. (2) can be solved by linear
programming algorithms (Koenker, 2005) or Majorize-Minimize
algorithms (Hunter & Lange, 2000). However, when the predictor
x is in high dimensional space, the aforementioned optimization
methods for QReg might be inefficient. High dimensional problems
are ubiquitous in applications such as image analysis, gene se-
quence analysis, etc. To the best of our knowledge, the problem
of high dimensional predictor is not sufficiently addressed in QReg
literature, and this paper proposes a method for QReg which can
work in high dimensional spaces.

The proposed algorithm for QReg is based on boosting (Freund
& Schapire, 1997), which is well known for its simplicity and good
performance. The powerful feature selection mechanism of boost-
ing makes it suitable to work in high dimensional spaces. Fried-
man, Hastie, and Tibshirani (2000) developed a general statistical
framework which yields a direct interpretation of boosting as a
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method for function estimation, which is a ‘‘stage-wise, additive
model’’.

Consider the problem of function estimation

f �ðxÞ ¼ arg min
f

E½lðY ; f ðxÞÞjx�;

where l(�, �) is a loss function which is typically differentiable and
convex with respect to the second argument. Estimating f⁄(�) from
the given data, {(xi,Yi), i = 1, . . . , n}, can be performed by minimizing
the empirical loss, n�1Pn

i¼1lðYi; f ðxiÞÞ, and pursuing iterative steep-
est descent in functional space. This leads us to the generic func-
tional gradient descent algorithm (Friedman, 2001; Mason, Baxter,
Bartlett, & Frean, 2000). Fig. 1 shows the version summarized in
Bühlmann and Hothorn (2007).

Many boosting algorithms can be understood as functional
gradient descent with appropriate loss function. For example, if
we choose l(Y, f) = exp(�(2Y � 1)f), we would recover AdaBoost
(Friedman et al., 2000), and L2 Boost (Bühlmann & Yu, 2003) corre-
sponds to l(Y, f) = (Y � f)2/2.

Motivated by the gradient boosting algorithms (Friedman,
2001; Mason et al., 2000), this paper estimates the quantile regres-
sion function by minimizing the objective function in Eq. (2) with
functional gradient descent. In each step, we approximate the neg-
ative gradient of the objective function by a base function, and
grow the model in that direction. This results in the Quantile Boost
Regression (QBR) algorithm. In the binary classification scenario,
we define the class label via a hidden variable, and the quantiles
of the class label can then be estimated by fitting the correspond-
ing quantiles of the hidden variable. An equivalent form of the def-
inition of quantile is introduced, whose smoothed version is
employed as the objective function for classification. Similar to
QBR, functional gradient ascent is applied to maximize the objec-
tive function, which yields the Quantile Boost Classification
(QBC) algorithm. The obtained Quantile Boost (QBoost) algorithms
are computationally efficient and converge to local optima. More
importantly, they enable us to solve high dimensional problems
efficiently.

The rest of this paper is organized as follows: in Section 2, we
first apply the functional gradient descent to QReg, yielding the
QBR algorithm, and then we proceed to propose the approximation

of the objective function for binary classification and to maximize
the objective function with functional gradient ascent in order to
obtain the QBC algorithm; Section 3 discusses some computational
issues in the proposed QBR and QBC algorithms and introduces
implementation details; Section 4 presents the experimental re-
sults of the proposed QBR and QBC algorithms on benchmark
regression and binary classification datasets, and in-depth discus-
sions of the results are also presented in Section 4; finally, Section 5
summarizes this paper with a brief discussion for future research
directions.

2. Methods

The methods proposed in our research are presented in this sec-
tion. We first directly apply the functional gradient descent to the
quantile regression model, yielding the quantile boost regression
algorithm. We then propose a smooth approximation to the opti-
mization problem for the quantiles of binary response, and based
on this we further propose the quantile boost classification algo-
rithm with some discussions of the related methods.

2.1. Quantile boost regression

We consider the problem of estimating quantile regression
function in the general framework of functional gradient descent
with the loss function

lðY; f Þ ¼ qsðY � f Þ ¼ ðY � f ÞIðY � f P 0Þ � ð1� sÞðY � f Þ:

A direct application of the algorithm in Fig. 1 yields the Quantile
Boost Regression (QBR) algorithm, which is shown in Fig. 2.

Similar to AdaBoost, QBR enables us to select most informative
predictors if an appropriate base learner is employed, and this will
be demonstrated experimentally in Section 4.1.1.

There is a large volume of literature applying boosting to
regression problems, for example in Duffy and Helmbold (2002),
Freund and Schapire (1997), and Zemel and Pitassi (2001). How-
ever, all these methods estimate the mean value of the response,
not quantiles. Langford, Oliveira, and Zadrozny (2006) proposed
to use classification technique for estimating the conditional

Fig. 1. Generic functional gradient descent.
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