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a b s t r a c t

When designing control charts, it is usually assumed that the observations from the process at different
time points are independent. However, this assumption may not be true for some production processes,
e.g., the continuous chemical processes. The presence of autocorrelation in the process data can result in
significant effect on the statistical performance of control charts. Jiang, Tsui, and Woodall (2000) devel-
oped a control chart, called the autoregressive moving average (ARMA) control chart, which has been
shown suitable for monitoring a series of autocorrelated data. In the present paper, we develop the eco-
nomic design of ARMA control chart to determine the optimal values of the test and chart parameters of
the chart such that the expected total cost per hour is minimized. An illustrative example is provided and
the genetic algorithm is applied to obtain the optimal solution of the economic design. A sensitivity anal-
ysis shows that the expected total cost associated with the control chart operation is positively affected
by the occurrence frequency of the assignable cause, the time required to discover the assignable cause or
to correct the process, and the quality cost per hour while producing in control or out of control, and is
negatively influenced by the shift magnitude in process mean.

� 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Statistical process control is an effective approach for improving
product quality and saving production costs for a firm. Since 1924
when Dr. Shewhart presented the first control chart, various con-
trol chart techniques have been developed and widely applied as
a primary tool in statistical process control. The major function
of control charting is to detect the occurrence of assignable causes
so that the necessary corrective action can be taken before a large
quantity of nonconforming product is manufactured. The control
chart technique may be considered as the graphical expression
and operation of statistical hypothesis test. When a control chart
is used to monitor a process, some test parameters should be
determined, i.e., the sample size, the sampling interval between
successive samples, and the control limits or critical region of the
chart. Duncan (1956) first proposed a cost function for economi-
cally determining the test parameters for the average control chart
that minimizes the average cost when a single out-of-control state
(assignable cause) exists, which is called the ‘‘economic design’’ of
control charts. Duncan’s cost function includes the cost of sampling

and inspection, the cost of defective products, the cost of false
alarm, the cost of searching assignable cause, and the cost of pro-
cess correction. Since then, considerable attention has been
devoted to the economically optimal determination of the test
parameters of control charts, e.g., see Montgomery (1980), Vance
(1983), Ho and Case (1994a) and Chou, Chen, and Liu (2001).
Lorenzen and Vance (1986) also introduced a unified approach
for economic design of control charts. Application of Lorenzen
and Vance’s approach may be found in Torng, Montgomery, and
Cochran (1994), Ho and Case (1994b) and Chou, Chen, and Liu
(2006).

Traditionally, when designing control charts, it is usually as-
sumed that the observations from the process at different time
points are independent. However, this assumption may not be ten-
able in some production processes, e.g., the continuous chemical
processes. The presence of autocorrelation in the process data
can result in significant effect on the statistical performance of
control charts. The major problem is that variations due to the
autocorrelation may produce false out-of-control signals. Excessive
false alarms may lead to unnecessary process adjustment and loss
of confidence in the control chart as a monitoring tool. Jiang et al.
(2000) developed a control chart, called the autoregressive moving
average (ARMA) control chart, which has been shown suitable for
monitoring a series of autocorrelated data.
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Various solution procedures for economically determining the
optimal values of the test parameters of control charts have been
developed and applied in the literature. The genetic algorithm
(GA), based on the concept of natural genetics, uses the stochastic
way (not deterministic rule) to guide the search direction of find-
ing the optimal solution and is able to search for many possible
solutions at the same time. Therefore, GA is considered as an
appropriate way for solving the problems of combinatorial optimi-
zation and has been successfully applied in solution procedure of
economic designs of control charts, e.g., see Chou, Wu, and Chen
(2006), Chou, Cheng, and Lai (2008) and Lin, Chou, and Lai (2009).

The present paper presents the economic design of ARMA con-
trol chart, in which the test and chart parameters are determined
such that the average total cost associated with control chart oper-
ation is minimized. In the next section, a brief description of the
use of ARMA control chart to maintain current control of an auto-
correlated process is given. The cost function is then established by
applying the cost function in Lorenzen and Vance (1986). The GA is
employed to obtain the optimal values of the test and chart param-
eters for ARMA control chart, and an example is provided to illus-
trate the solution procedure. A sensitivity analysis is then carried
out to investigate the effects of model parameters on the solution
of the economic design.

2. The ARMA control chart

The ARMA control chart was developed by Jiang et al. (2000)
and has been shown to be effective for monitoring a process with
autocorrelated measurements. Suppose that the variable xt is the
measurement at time t from a normal distribution with mean l
and variance r2. According to Jiang et al. (2000), for an ARMA pro-
cess, the measurement xt at time t can be expressed as a linear
combination of the measurement at time t � 1, the vibration fac-
tors at time t (denoted by at) and the vibration factors at time
t � 1 (denoted by at�1), i.e., mathematically:

Xt ¼ at � vat�1 þ uxt�1; for juj < 1 and jvj < 1; ð1Þ

where ai’s at time i are normally and independently distributed
with mean 0 and variance r2

a , the constant u is the autoregressive
parameter of the process, and the constant v is the moving average
parameter of the process. It can be shown that:

r2 ¼ 1� 2uv þ v2

1� u2 r2
a : ð2Þ

The sample statistic used in the operation of an ARMA control chart
at time t is defined as:

Zt ¼ h0xt � hxt�1 þ /Zt�1 ¼ h0ðxt � bxt�1Þ þ /Zt�1; ð3Þ

where Z0 is generally the target of the characteristic, h and / are
respectively the moving average parameter and the autoregressive
parameter of the ARMA control chart, h0 ¼ 1þ h� / and b ¼ h=h0.
To guarantee that the monitoring process is reversible and station-
ary, we have the constraints that jbj < 1 and j/j < 1. It may be
shown that the sample statistic in Eq. (3) has the mean l and a stea-
dy-state variance r2

Z , where:

r2
Z ¼

2ðh� /Þð1þ hÞ
1þ h

� �
r2: ð4Þ

Thus, the upper and lower control limits, abbreviated by UCL and
LCL respectively, and the center line (CL) of the ARMA control chart
can be calculated by

UCL ¼ lþ krZ ; ð5Þ
CL ¼ l;
LCL ¼ l� krZ : ð6Þ

where k is the control limit coefficient and is one of the test param-
eters in the ARMA control chart to be determined in the economic
design. The chart parameters h and / play important roles in the
detection performance for an ARMA chart. In the present paper,
the values of h and / will be also determined based on economic
consideration.

3. The cost function

To simplify the mathematical manipulation of the cost function
and its corresponding economic design, the following assumptions
are made:

(1) The measurements monitored by the ARMA control chart
follow the first-order autoregressive and moving average
process. That is, the design of ARMA control chart in the
present paper is focused on the process of ARMA(1, 1).

(2) In the start of the process, the process is assumed to be in the
safe state; that is, l ¼ l0.

(3) The process mean may be shifted to the out-of-control
region due to an assignable cause; that is, l ¼ l0 þ dr.

(4) The process standard deviation r remains unchanged.
(5) The time between occurrences of the assignable cause is

exponentially distributed with a mean 1=k.
(6) When the process goes out of control, it stays out of control

until detected and corrected.
(7) During each sampling interval, there exists at most one

assignable cause which makes the process out of control.
The assignable cause will not occur at sampling time.

(8) The measurement error is assumed to be zero.
(9) The cost function developed by Lorenzen and Vance (1986)

is applied in the present paper to be the objective function
for the economic design of the ARMA control chart. The
expected cost (EC) per hour derived by Lorenzen and Vance
(1986) includes the quality cost during production, the cost
of false alarm, the cost of searching assignable cause, the
cost of process correction, and the cost of sampling and
inspection, and is mathematically expressed by

EC ¼
c0
k þ c1ðnEþ h � ARL1 � sþ r1t1 þ r2t2Þ þ sðYþcQÞ

ARL0

1
k þ ð1� r1Þ st0

ARL0
þ nEþ h � ARL1 � sþ t1 þ t2

þ
ðaþ bnÞ

1
k � sþ nEþ h � ARL1 þ r1t1 þ r2t2

h
þW þ cQ

1
k þ ð1� r1Þ st0

ARL0
þ nEþ h � ARL1 � sþ t1 þ t2

;

ð7Þ

where
n = sample size,
h = the sampling interval,
a = fixed cost per sample,
b = cost per unit sampled,
c0 = quality cost per hour while producing in control,
c1 = quality cost per hour while producing out of control
(c1 > c0),
E = time to sample and chart one item,
Y = cost per false alarm,
Q = productivity loss per process cease,
W = cost to locate and correct the assignable cause,
s = expected number of samples taken while in control, and it
may be shown that s ¼ e�kh

1�e�kh,
s = expected time of occurrence of the assignable cause
between two samples while in control, and it is shown that
s ¼ 1�ð1þkhÞe�kh

kð1�e�khÞ ,
t0 = expected search time when the signal is a false alarm,
t1 = expected time to discover the assignable cause,
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