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a b s t r a c t

Interval-valued fuzzy sets involve more uncertainties than ordinary fuzzy sets and can be used to capture
imprecise or uncertain decision information in fields that require multiple-criteria decision analysis
(MCDA). This paper takes the simple additive weighting (SAW) method and the technique for order pref-
erence by similarity to an ideal solution (TOPSIS) as the main structure to deal with interval-valued fuzzy
evaluation information. Using an interval-valued fuzzy framework, this paper presents SAW-based and
TOPSIS-based MCDA methods and conducts a comparative study through computational experiments.
Comprehensive discussions have been made on the influence of score functions and weight constraints,
where the score function represents an aggregated effect of positive and negative evaluations in perfor-
mance ratings and the weight constraint consists of the unbiased condition, positivity bias, and negativity
bias. The correlations and contradiction rates obtained in the experiments suggest that evident similar-
ities exist between the interval-valued fuzzy SAW and TOPSIS rankings.

� 2011 Elsevier Ltd. All rights reserved.

1. Introduction

The concept of interval-valued fuzzy sets (IVFSs) is defined by
an interval-valued membership function (Sambuc, 1975; Zadeh,
1975), and an element’s degree of membership in a set is charac-
terized as a closed subinterval of [0, 1]. Because it may be difficult
for decision-makers to exactly quantify their opinions of subjective
judgments as a number within the interval [0, 1], it is better to rep-
resent the degree of membership by an interval rather than a single
number. For this reason, IVFSs can be used to capture imprecise or
uncertain decision information and many useful methods have
been developed to enrich IVFS theory. Wang and Li (1998) defined
interval-valued fuzzy numbers and interval-distributed numbers
and provided a starting point for real-world applications. Deschrij-
ver (2007) introduced some arithmetic operators for IVFSs. Vlachos
and Sergiadis (2007) established a unified framework that includes
the concepts of subsets, entropy, and cardinality for IVFSs. Wu and
Mendel (2007) provided definitions of the centroid, cardinality,
fuzziness, variance, and skewness of interval type-2 fuzzy sets.
Zeng and Guo (2008) proposed a new axiomatic definition of the
IVFS inclusion measure and examined relationships among the
normalized distance, similarity measure, inclusion measure, and
entropy of IVFSs. Sun, Gong, and Chen (2008) defined an interval-
valued relation and built an interval-valued fuzzy information

system. Bustince, Barrenechea, Pagola, and Fernandez (2009)
presented a method for constructing IVFSs (or interval type-2 fuzzy
sets) from a matrix (or image) and analyzed the application of
IVFSs to edge detection in grayscale images. Bigand and Colot
(2010) proposed a new fuzzy image filter, controlled by IVFSs, to
remove noise from images. Yakhchali and Ghodsypour (2010) ad-
dressed the determination of possible values of the earliest and lat-
est starting times of an activity in an interval-valued network with
minimal time lag. Lu, Huang, and He (2010) developed an interval-
valued fuzzy linear-programming method based on infinite a-cuts,
and they applied this method to water resource management.

IVFSs involve more uncertainties than ordinary fuzzy sets. They
allow for additional degrees of freedom to represent the uncer-
tainty and fuzziness of the real world (Chen & Lee, 2010). Because
IVFS theory is valuable in modeling imprecision and due to its abil-
ity to easily reflect the ambiguous nature of subjective judgments,
IVFSs are suitable for capturing imprecise or uncertain information
in fields that require multiple-criteria decision analysis (MCDA).
Wei, Wang, and Lin (2011) introduced a correlation and correlation
coefficients for interval-valued intuitionistic fuzzy sets. They then
established an optimization model based on the negative ideal
solution and max-min operator to solve multiple-attribute
decision-making problems. Ye (2009) proposed a novel accuracy
function for interval-valued intuitionistic fuzzy sets and applied
weighted arithmetic average operator in MCDA. Yang, Lin, Yang,
Li, and Yu (2009) combined IVFSs and soft sets to obtain an inter-
val-valued fuzzy soft set. They defined the complement and the
‘‘and’’ and ‘‘or’’ operations, proved DeMorgan’s associative and
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distribution laws, and applied these to a decision-making problem.
Ashtiani, Haghighirad, Makui, and Montazer (2009) presented an
interval-valued fuzzy technique for order preference by similarity
to an ideal solution (TOPSIS) for solving MCDA problems. Wei
and Chen (2009) applied their proposed similarity measure be-
tween interval-valued fuzzy numbers to develop a new fuzzy risk
analysis algorithm. Chen and Chen (2009) presented a fuzzy risk
analysis method based on a similarity measure between interval-
valued fuzzy numbers and interval-valued fuzzy number arithme-
tic operators. Chen and Lee (2010) presented an interval type-2
fuzzy TOPSIS method to handle fuzzy multiple-attribute group
decision-making problems based on interval type-2 fuzzy sets. To
aggregate interval-valued intuitionistic fuzzy information, Xu
(2010) proposed correlated averaging and geometric operators
for interval-valued intuitionistic fuzzy processes. In the context
of interval-valued intuitionistic fuzzy sets, Li (2010a) constructed
a pair of nonlinear fractional programming models to calculate
the relative closeness coefficient intervals of alternatives to the
ideal solutions. In a similar manner, Li (2010b) developed
TOPSIS-based nonlinear-programming methodology.

As a whole, the above-mentioned studies have focused on the
extended simple additive weighting (SAW) or TOPSIS methods
underlying interval-valued fuzzy information. The SAW method
(Harsanyi, 1955) is a commonly known and very widely used
method for providing a comparative evaluation procedure in
MCDA. SAW uses all criterion values of an alternative and employs
the regular arithmetical operations of multiplication and addition.
Further, it is also necessary to determine a reasonable basis on
which to form the weights reflecting the importance of each crite-
rion. Einhorn and McCoach (1977) investigated the properties of
SAW, including conditionally monotonic with utility and risk neu-
trality of the decision behavior. On the other hand, TOPSIS, devel-
oped by Hwang and Yoon (1981), is a well-known MCDA
method. The basic concept of the TOPSIS method is that the chosen
alternative should have the shortest distance from the positive
ideal solution and the farthest distance from the negative ideal
solution. TOPSIS assumes that each criterion takes either monoton-
ically increasing or monotonically decreasing utility. Both SAW and
TOPSIS require the same input data and they can lead to a unique
choice by comparing overall evaluations in SAW or closeness coef-
ficients in TOPSIS.

In the decision context of IVFSs, substantial research took the
SAW method or TOPSIS technique as the main structure to deal
with multi-criteria evaluation information and to construct a prior-
ity ranking for a best alternative. The advantage of SAW is simple
and easy to use and understand, while TOPSIS considers positive
and negative ideal solutions as anchor points to reflect the contrast
of the currently achievable criterion performances. Using an inter-
val-valued fuzzy framework, the purpose of this study is to sepa-
rately establish two MCDA methods using SAW and TOPSIS and
then conduct a comparative study through computational experi-
ments. Additional discussions have been made on the influence
of score functions and weight constraints. First, a series of score
functions for interval-valued evaluations is proposed from various
perspectives to identify the mixed results of the outcome expecta-
tions. Based on the score functions, the degree of suitability to
which each alternative satisfies the decision-maker’s require-
ments, or instead, the relative degree of closeness of each alterna-
tive with respect to the positive ideal solution is defined. Because
the information available on the relative importance of the multi-
ple criteria for decision-making is often incomplete, this study
proposes several optimization models with suitability functions
or closeness coefficients for ill-known membership grades. To cope
with different weight constraints of criterion importance, an inte-
grated programming model is developed, utilizing both deviation
variables and weighted suitability functions (or closeness coeffi-

cients). Furthermore, objective information in the decision matrix
and subjective information of the criterion importance are com-
bined to construct procedural steps using the SAW and TOPSIS
methods for acquiring optimal decisions. Finally, a large set of ran-
dom MCDA problems are generated, and computational studies are
undertaken to compare preference orders determined by interval-
valued fuzzy SAW and TOPSIS methods with several score func-
tions and different conditions for the criterion weights.

2. Decision environment and weight assessment

Definition 1. Let Int([0, 1]) stand for the set of all closed subin-
tervals of [0, 1]. Let X be an ordinary finite non-empty set. An IVFS
A in X is an expression given by:

A ¼ fhx;MAðxÞijx 2 Xg; ð1Þ

where the function MA: X ? Int([0, 1]) defines the degree of mem-
bership of an element x in A, such that x ? MAðxÞ ¼ ½M�

A ðxÞ;M
þ
A ðxÞ�:

Definition 2. For each IVFS A in X, the value of

WAðxÞ ¼ Mþ
A ðxÞ �M�

A ðxÞ ð2Þ

represents the width of the interval MA(x). WA(x) can be considered
as the degree of uncertainty (or indeterminacy) or the degree of
hesitancy associated with the membership of element x e X in IVFS
A. Let IVFS(X) denote the class of IVFSs in the universe X.

2.1. Decision matrix based on IVFSs

In the work presented here, evaluations of each alternative in an
MCDA problem with respect to each criterion of the fuzzy concept
‘‘excellence’’ are given using IVFSs. Suppose that there exists a non-
dominated set of alternatives A = {A1, A2, . . . , Am}. Each alternative
is assessed on n criteria, which are denoted by X = {x1, x2, . . ., xn}.Let
Mij: X ? Int([0, 1]) such that xj ? Mij ¼ ½M�

ij ;M
þ
ij �, where M�

ij and Mþ
ij

are the lower extreme and upper extreme, respectively, of the
membership degrees of the alternative Ai e A with respect to the
criterion xj e X for the fuzzy concept ‘‘excellence.’’ In addition, let
Xij ¼ fhxj; ½M�

ij ;M
þ
ij �ig. The degree of uncertainty in alternative Ai

in the set Xij is defined by Wij ¼ Mþ
ij �M�

ij . The interval-valued deci-
sion matrix D is defined in the following form:

D ¼

x1 x2 � � � xn

A1 ½M�
11;M

þ
11� ½M�

12;M
þ
12� � � � ½M

�
1n;M

þ
1n�

A2 ½M�
21;M

þ
21� ½M�

22;M
þ
22� � � � ½M

�
2n;M

þ
2n�

..

. ..
. ..

. . .
. ..

.

Am ½M�
m1;M

þ
m1� ½M

�
m2;M

þ
m2� � � � ½M

�
mn;M

þ
mn�

2
66666664

3
77777775
; ð3Þ

where the characteristics of the alternative Ai can be represented by
the IVFS as follows:

Ai ¼ fhx1; ½M�
i1;M

þ
i1�i; hx2; ½M�

i2;M
þ
i2�i; . . . ; hxn; ½M�

in;M
þ
in�ig

¼ fhxj; ½M�
ij ;M

þ
ij �ijxj 2 Xg: ð4Þ

In a similar manner, the decision-maker’s weight lies in the
closed interval ½wl

j; wu
j �, where 0 6 wl

j 6 wu
j 6 1 for each criterion

xj e X. Because there is no objection in the literature to considering
normalized weights, the criterion weights should be normalized to
sum to one in general. Therefore,

Pn
j¼1wl

j 6 1 and
Pn

j¼1wu
j P 1 are

required to determine the weights wj e [0, 1] (j = 1, 2, . . . , n) that
satisfy wl

j 6 wj 6 wu
j and

Pn
j¼1wj ¼ 1 .
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