
Hardware–software platform for computing irreducible testors

Alejandro Rojas, René Cumplido ⇑, J. Ariel Carrasco-Ochoa, Claudia Feregrino, J. Francisco Martínez-Trinidad
Computer Science Department, National Institute for Astrophysics, Optics and Electronics, Sta. Ma. Tonanzintla, Puebla 72840, Mexico

a r t i c l e i n f o

Keywords:
Feature selection
Testor theory
Custom architectures
FPGAs

a b s t r a c t

In pattern recognition, feature selection is a very important task for supervised classification. The
problem consists in, given a dataset where each object is described by a set of features, finding a subset
of the original features such that a classifier that runs on data containing only these features would reach
high classification accuracy. A useful way to find this subset of the original features is through testor
theory. A testor is defined as a subset of the original features that allows differentiating objects from
different classes. Testors are very useful particularly when object descriptions contain both numeric
and non-numeric features. Computing testors for feature selection is a very complex problem due to
exponential complexity, with respect to the number of features, of algorithms based on testor theory.
Hardware implementation of testor computing algorithms helps to improve their performance taking
advantage of parallel processing for verifying if a feature subset is a testor in a single clock cycle. This
paper introduces an efficient hardware–software platform for computing irreducible testors for feature
selection in pattern recognition. Results of implementing the proposed platform using a FPGA-based
prototyping board are presented and discussed.

� 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Reconfigurable computing based on the combination of conven-
tional microprocessors and field programmable gate arrays
(FPGAs), has become increasingly popular for implementing
special-purpose hardware to accelerate complex tasks. Usually an
FPGA-based implementation is embedded in a PC or workstation,
which drives its activity and manages the results. Following this
trend, we developed an efficient hardware–software platform for
computing irreducible testors (Lazo-Cortés, Ruiz-shulcloper, &
Alba-cabrera, 2001) for feature selection in pattern recognition
(Al-Ani, 2009; Chen, Tseng, & Hong, 2008; Jain & Zongker, 1997;
Kwan & Choi, 2002; Liu & Setiono, 1998).

The feature selection problem in pattern recognition consists in,
given a dataset where each object is described by a set of features,
finding a subset of the original features such that a classifier that
runs on data containing only these features would reach higher
classification accuracy. This procedure can reduce not only the cost
of recognition by reducing the number of features to be collected,
but in some cases it can also provide better classification accuracy.
For this task, a higher performance with lower computational
effort is expected (Kwan & Choi, 2002). Several algorithms have
been proposed for feature selection, however, most of them were
developed for numeric features (Guyon & Elisseeff, 2003; Jain &
Zongker, 1997). We chose BT, an algorithm based on testor theory,

which can be applied on datasets described with both numeric and
non-numeric features, even when there are missing data. Although
the theoretical aspect of computing irreducible testors is advanced
(Asaithambi & Valev, 2004; Djukova, 2005; Kudryavtsev, 2006;
Martínez-Trinidad & Guzmán-Arenas, 2001; Valev & Sankur,
2004), there are not practical hardware implementations reported
previously, excepting our previous works.

In our first work, an architectural design based on a brute force
approach for computing testors was proposed (Cumplido, Carrasco,
& Feregrino, 2006). In this first approach, each candidate was gen-
erated by a counter that incremented its value by 1 on each itera-
tion. The architecture is able to evaluate if a candidate is a testor in
a single clock cycle, however, the architecture did not exploit the
characteristics of a particular data set that could allow to signifi-
cantly reduce the number of candidates tested. The next step in
our architectural design (Rojas, Cumplido, Carrasco-Ochoa, Feregri-
no, & Martnez-Trinidad, 2007) was the implementation of BT
algorithm for computing testors where a candidate generator that
jumps over unnecessary candidates allows reducing the number of
comparisons needed in the brute force approach. These two previ-
ous works compute the whole set of testors, however for pattern
recognition applications where testor theory can be applied, it is
important to obtain only testos that are irreducible. Thus, as the
next step in our design, this work proposes a hardware–software
platform for computing only irreducible testors. This platform
consists of the combination of a specialized hardware architecture
that is implemented on a commercial FPGA-based prototyping
board and a host application running on a PC. The architecture

0957-4174/$ - see front matter � 2011 Elsevier Ltd. All rights reserved.
doi:10.1016/j.eswa.2011.07.004

⇑ Corresponding author.
E-mail address: rcumplido@inaoep.mx (R. Cumplido).

Expert Systems with Applications 39 (2012) 2203–2210

Contents lists available at SciVerse ScienceDirect

Expert Systems with Applications

journal homepage: www.elsevier .com/locate /eswa

http://dx.doi.org/10.1016/j.eswa.2011.07.004
mailto:rcumplido@inaoep.mx
http://dx.doi.org/10.1016/j.eswa.2011.07.004
http://www.sciencedirect.com/science/journal/09574174
http://www.elsevier.com/locate/eswa


implements the BT algorithm, as in Rojas et al. (2007), but it also
includes a new module that eliminates most of the testors that
are not irreducible before transferring them to the host application
for final processing.

The intensive computational requirements due to the exponen-
tial complexity, with respect to the number of features, of the
testor theory based algorithms can be met by a combination of
technological improvements and efficient hardware architectures
based on parallel computational models. Specific parallel architec-
tures can be designed to exploit the parallelism found in the
irreducible testor computing algorithms. Further optimizations
such as incremental processing and the use of multiple processing
elements are also possible.

2. Computing irreducible testors

In pattern recognition, feature selection is a very important
task for supervised classification. A useful way to do this selec-
tion is through testor theory. The concept of testor for pattern
recognition was introduced by Dmitriev, Zhuravlev, and Krende-
liev (1966). They defined a testor as a subset of features that al-
lows differentiating objects from different classes. Testors are
quite useful, especially when object descriptions contain both
numeric and nonnumeric features, and maybe they are incom-
plete (mixed incomplete data) (Martínez-Trinidad & Guzmán-
Arenas, 2001).

Let TM be a training matrix with K objects described through N
features of any type (x1, . . . ,xN) and grouped in r classes. Let DM be
a dissimilarity Boolean matrix (0 = similar, 1 = dissimilar), obtained
from feature by feature comparisons of every pair of objects from
TM belonging to different classes. DM has N columns and M rows,
where M� K.

Testors and irreducible testors are defined as follows:

Definition 1. A subset of features T is a testor if and only if when
all features are eliminated from DM, except those from T, there is
not any row of DM with only 0s.

Definition 2. A subset of features T is an irreducible testor if and
only if T is a testor and there is not any other testor T0 such that
T0 � T.

In Definition 1, if there is not any row of DM with only 0’s it
means that there is not a pair of objects from different classes that
are similar on all the features of T, that is, a testor T allows
differentiating between objects from different classes.

The number of rows in DM could be too large, therefore a
strategy to reduce this matrix without losing relevant information
for computing irreducible testors was introduced by Lazo-Cortés
et al. (2001).

Definition 3. If t and p are two rows of DM, then p is a sub-row of t
if and only if:

(a) t has 1 everywhere p has 1
(b) there is at least one column such that t has 1 and p has 0.

Definition 4. A row t of DM is a basic row of DM if and only if DM
does not have any other row t0 such that t0 is a sub-row of t.

Definition 5. The matrix that contains only the basic rows of DM is
called basic matrix and is denoted by BM.

Let TT(M) be the set of all irreducible testors of the Boolean matrix
M, then

Proposition 1. TT(DM) = TT(BM).

This proposition indicates that the set of all irreducible testors
calculated using DM or BM is the same (Lazo-Cortés et al., 2001).
However, BM is smaller than DM and the construction of BM from
DM is a very fast process, for example, the time for obtaining a BM
matrix with 48 columns and 32 rows from a DM matrix with 48
columns and 193,753 rows, is about 0.21 s on a PC with an Intel
Centrino Duo processor running at 1.6 GHz, with 1024 MB of RAM.

There are two kinds of algorithms for computing irreducible
testors: the internal scale algorithms and the external scale
algorithms. The former analyzes the matrix to find out some condi-
tions that guarantee that a subset of features is an irreducible
testor. The latter looks for irreducible testors over the whole power
set of features; algorithms that search from the empty set to the
whole feature set are called Bottom–Top algorithms and algorithms
that search from the whole feature set to the empty set are called
Top–Bottom algorithms. The selected algorithm is a Bottom–Top
external scale algorithm, called BT (Sánchez-Díaz & Lazo-Cortés,
2002). This algorithm was selected because of its simplicity and
inherent parallelism which can be easily exploited in a hardware
architecture.

In order to review all the search space, BT codifies the feature
subsets as binary N-tuples where 0 indicates that the associated
feature is not included and 1 indicates that the associated feature
is included (some examples can be seen in Table 1). For computing
testors, BT follows the order induced by the binary natural num-
bers, this is, from the empty set to the whole feature set. The BT
algorithm is as follows:

1. Generate first no null N-tuple

a ¼ ða1; . . . ;aNÞ ¼ ð0; . . . ;0;1Þ:

2. Determine if the generated N-tuple a is a testor of BM.
3. If a is a testor of BM, store it and take

a0 ¼ ½ðaÞb þ 2N�k�tuple;

where k is the index of the last 1 in a and (a)b represents the natural
number corresponding to a and [(a)b + 2N�k]tuple represents the tu-
ple associated with the natural number (a)b + 2N�k.
4. If ais not a testor of BM, determine the first row v of BM with

only 0’s in the columns where a has 1’s and generate a0 as:

a0j ¼
aj j < k;

1 j ¼ k;

0 j > k;

8><
>:

where k is the index of the last 1 in v.
5. Take a = a0.
6. If ais not after (1,1, . . .,1,1) then, go to 3.
7. Eliminate from the stored testors those which are not irreduc-

ible testors.

Step 3 jumps over all the supersets that can be constructed from
a by adding 1’s (features) after the last 1 in a. For example if N = 9
and a = (0,1,1,0,0,1,0,0,0) then k = 6 and the following
2N�k � 1 = 29�6 � 1 = 7 N-tuples represent supersets of the feature

Table 1
N-tuples omitted by step 3.

2204 A. Rojas et al. / Expert Systems with Applications 39 (2012) 2203–2210



Download	English	Version:

https://daneshyari.com/en/article/388120

Download	Persian	Version:

https://daneshyari.com/article/388120

Daneshyari.com

https://daneshyari.com/en/article/388120
https://daneshyari.com/article/388120
https://daneshyari.com/

