
A rule-based approach for estimating software development cost using
function point and goal and scenario based requirements

Soonhwang Choi a,1, Sooyong Park b,1, Vijayan Sugumaran c,d,⇑
a DMC R&D Center, Samsung Electronics, Suwon, Gyeonggi-do 443-742, Republic of Korea
b Department of Computer Science, Sogang University, Seoul 121-742, Republic of Korea
c Department of Decision and Information Sciences, School of Business Administration, Oakland University, Rochester, MI 48309, United States
d Department of Service Systems Management and Engineering, Sogang Business School, Sogang University, Seoul 121-742, Republic of Korea

a r t i c l e i n f o

Keywords:
Project management
Requirements triage
Cost estimation
Function point
Goal
Scenario

a b s t r a c t

Function point is a method used to measure software size and estimate the development cost. However,
for large complex systems, cost estimation is difficult because of the large number of requirements
expressed in natural language. In this paper we propose a rule-based approach for estimating software
development cost in the requirements analysis phase. It combines goal and scenario based requirements
analysis with function point based cost estimation. In our proposed approach, Context Analysis Guiding
rules, Data Function Extraction Guiding rules, and Transaction Function Extraction Guiding rules have
been developed to identify function points from text based goal and scenario descriptions. These rules
are established based on a linguistic approach. The contribution of the proposed approach is to help pro-
ject managers decide which requirements should be realized.

� 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Developing software systems that meet stakeholders’ needs and
expectations is the ultimate goal of any software provider seeking
a competitive edge. To achieve this, we must effectively and accu-
rately manage our stakeholders’ system requirements: the fea-
tures, functions, and attributes they need in their software
system (Davis, 1993; S�en & Baraçlı, 2010). Once we agree on these
requirements, we can use them as a focal point for the develop-
ment process and produce a software system that meets the expec-
tations of both customers and users. However, in real world
software development, there are usually more requirements than
we can implement given stakeholders’ time and resource con-
straints. Thus, project managers face the following dilemma: how
to select a subset of the customers’ requirements and still produce
a system that meets their needs (Karlsson & Ryan, 1997)?

Software requirements triage is the process of determining
which requirements a product should satisfy given the time and
resources available (Davis, 2003). The practice of triage increases
the likelihood that a product will meet customers’ needs, and thus
contributes significantly to the economic impact of that product on

the company’s bottom line. Yet despite the potential benefits of
requirements triage, not much research has been conducted, and
the descriptions that do appear are brief (Davis & Zweig, 2000;
Leffingwell & Widrig, 2000; Wiegers, 1999; Yourdon, 1997). This
is because triage is a difficult task, fraught with political and finan-
cial dangers—politically dangerous because both technical and
marketing personnel claim the tasks as part of their responsibility;
financially dangerous because a mistake could trigger a major loss
of revenue. Davis (2003) has studied the requirements practices of
approximately 100 companies and organizations over 25 years. He
reports that one of the 14 key recommendations is to contain
‘‘Cost’’. Boehm (1981) and Boehm and In (1996) argues that project
managers should be able to manage the impact of changing
requirements on software cost and schedule. Therefore we need
to identify the scope of project and develop an appropriate plan
for project at the initial phase of software development.

Recently, some proposals have been made for estimating cost
from requirements. Larvet and Vallée (2002) have defined an esti-
mator based on the information available at the requirements
stage, mainly the text of requirements. They advocate a set of tex-
tual metrics that could be predictors; it includes four distinct met-
rics, namely, TNW, NKW, AUTO and MANU. It is possible to
quantify the complexity of a project through simple linguistic met-
rics that are directly issued from the requirements. Auer, Becker,
Rauber, and Biffl (2005) proposed a transparent way of visualizing
the similarity of use cases without the need for explicit data collec-
tion; an implicit analogy metric is obtained by using textual simi-
larity. Lavazza and Valetto (1981) have presented a case study that

0957-4174/$ - see front matter � 2011 Elsevier Ltd. All rights reserved.
doi:10.1016/j.eswa.2011.07.029

⇑ Corresponding author at: Department of Decision and Information Sciences,
School of Business Administration, Oakland University, Rochester, MI 48309, United
States. Tel.: +1 248 370 2831/+82 2 705 8845.

E-mail addresses: soonhwang.choi@samsung.com (S. Choi), sypark@mail.
sogang.ac.kr (S. Park), sugumara@oakland.edu (V. Sugumaran).

1 Tel.: +82 2 705 8928.

Expert Systems with Applications 39 (2012) 406–418

Contents lists available at ScienceDirect

Expert Systems with Applications

journal homepage: www.elsevier .com/locate /eswa

http://dx.doi.org/10.1016/j.eswa.2011.07.029
mailto:soonhwang.choi@samsung.com
mailto:sypark@mail.  sogang.ac.kr
mailto:sypark@mail.  sogang.ac.kr
mailto:sugumara@oakland.edu
http://dx.doi.org/10.1016/j.eswa.2011.07.029
http://www.sciencedirect.com/science/journal/09574174
http://www.elsevier.com/locate/eswa


aims at quantitative assessment of the impact of requirements
changes, and estimation of the cost of development activities that
must be carried out to accomplish those changes. They adopted a
very simple approach to requirements quantification: they just
counted the labels placed on textual requirements for identifying
them and tracing them to design and code elements.

Although there are several different approaches for estimating
software project efforts (Li, Xie, & Goh, 2009; Park & Baek, 2008;
Pendharkar, 2010), few of them are actually applied successfully
in typical industrial environments. One of the main reasons is that
each estimation technique usually relies on its own unique way
that is subjective. They need to be combined with general cost esti-
mation method like function point. However, they are not very
conducive to be formally used with general cost estimation meth-
ods, and do not provide any methodological guidelines for how to
estimate cost from requirements. Finally, these approaches do not
directly help project managers in selecting a sub set of the require-
ments for implementation.

In this paper, we propose a rule-based approach to count function
point from textual requirements through goal and scenario based
linguistic approach (Kim, Park, & Sugumaran, 2004, 2006). Thus,
our main objective is to develop a methodology for counting func-
tion point from textual requirements. Two characteristics of the pro-
posed approach contribute to the achievement of this objective.

First, textual requirements are specified in terms of goal and
scenario. We adopt goal and scenario based approach for require-
ments engineering from prior work (Kim et al., 2004, 2006). The
second characteristic of the approach is the concept of extraction
rules to count function point. These rules guide the user to count
function point. There is a key notion embodied in the extraction
rules. The idea is that the goal and scenario at the interaction level
describes the interaction between user or external application and
the target application. It includes data for interaction, which can be
used to derive data functions, and behavior for data processing that
leads to transaction functions.

The rest of the paper is organized as follows. Section 2 describes
the related work regarding the basic concepts of both goal and sce-
nario approach and function point. In Section 3, our approach to
count function point from textual requirements in terms of goal
and scenario is discussed using a case example. Then, Section 4 de-
scribes the validation of our approach. The last section concludes
the paper and describes future work.

2. Prior work

2.1. Goal and scenario based requirements analysis

Goal and scenario based requirements analysis is used to elicit
and analyze requirements before function point is counted. After
requirements are specified in terms of goal and scenario, function
point can be calculated based on goal and scenario. In this paper
we adopt the goal and scenario approach discussed in Kim et al.
(2004, 2006), which is briefly described below.

The goal and scenario approach has been used to elicit initial
requirements and to refine requirements from a higher level to a
lower level (Dardenne, Van Lamsweerde, & Fickas, 1993; Kim, Park,
Sugumaran, & Yang, 2007; Kim et al., 2004, 2006; Rolland, Souve-
yet, & Achour, 1998). The goal and scenario approach provides
multiple abstraction levels which help in the separation of con-
cerns in requirements elicitation. We use four abstraction levels,
namely, business, service, interaction and internal level. The aim
of the business level is to identify the ultimate purpose of a system.
At this level, the overall system goal is specified by the organiza-
tion or a particular user. The aim of the service level is to identify
the services that a system should provide to an organization and

their rationale. At the system interaction level the focus is on the
interaction between the system and its agents. The internal level
focuses on what the system needs to perform the interactions se-
lected at the system interaction level. A goal is generated at each
level and scenarios are created to achieve that goal. Goals at lower
level are derived from scenarios at higher level. This mechanism
supports the elicitation of requirements through goal and scenario,
and helps to refine the requirements.

We also use goal and scenario authoring rules. A Goal is
authored as a template hVerb + Target + Direction + Wayi, where
Verb is an active verb, Target is a conceptual or a physical object,
Direction is either source or destination, and Way is the way in
which the goal is to be achieved. In general each goal is expressed
as a simple sentence with ‘Verb’ and ‘Target’ parameter as manda-
tory. Sometimes ‘direction’ and ‘way’ can be omitted. For example,
the goal, ‘Withdraw cash from the ATM’ is represented as follows:
‘(Withdraw)Verb (Cash)Target (From the ATM)Dir’.

The scenarios capture real requirements since they describe real
situations or concrete behaviors, and goals can be achieved
through the execution of scenarios. Thus, scenarios have their
goals, and typically, goals are achieved by scenarios. In other
words, just as goals can help in scenario discovery, scenarios can
also help in goal discovery. As each individual goal is discovered,
a scenario can be authored for it. Once a scenario has been
authored, it can be explored to yield further goals. All scenarios
should be authored using the following format:

‘Subject : Agent þ Verbþ Target : Object þ Direction

: ðSource;DestinationÞ þWay’:

The expected scenario prose is a description of a single course of
action. This course of action should be an illustration of fulfillment of
the goal. It should describe the course of actions that are expected,
not the actions that are not expected, impossible, and not relevant
with regard to the problem domain. Although this format may be
perceived to be a bit simplistic, it is sufficient to proceed with mod-
eling goals and scenarios. The indirect objects can be filled in the slot
of Direction. For example, ‘Tom gives me a book’ can be rewritten,
according to our rules as, ‘(Tom)Agent (gives)Verb (a book)Object (to
me)Direction’. The ‘Direction’ and ‘way’ are optional in a scenario.

2.2. Function point

Function point is a method for measuring software size which
was developed in 1979 (Albrecht, 1979). The method is widely
used and adopted as an international standard, namely,
ISO14143-1 (ISO-IEC, 1998). It is also adopted by ministry of infor-
mation and communication in Korea (MIC, 2004). The IFPUG
(International Function Point User Group) was established in
1984 and has published FP CPM (Function Point Counting Practice
Manual) (IFPUG, 2000). Functions of a software system consist of
the following components according to IFPUG’s Counting Practice
Manual:

� ILF (Internal Logical File): data or control information main-
tained through one or more elementary process of the target
application
� EIF (External Interface File): data or control information refer-

enced through one or more elementary processes
� EI (External Input): an elementary process to maintain an ILF

or alter the behavior of the application
� EO (External Output): a process that presents information to

user through processing logic
� EQ (External inQuiry): an elementary process for presenting

information to the user through retrieval of data or control
information from an ILF or EIF

S. Choi et al. / Expert Systems with Applications 39 (2012) 406–418 407



Download English Version:

https://daneshyari.com/en/article/388292

Download Persian Version:

https://daneshyari.com/article/388292

Daneshyari.com

https://daneshyari.com/en/article/388292
https://daneshyari.com/article/388292
https://daneshyari.com

