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a b s t r a c t

This study proposes an indirect adaptive self-organizing RBF neural control (IASRNC) system which is
composed of a feedback controller, a neural identifier and a smooth compensator. The neural identifier
which contains a self-organizing RBF (SORBF) network with structure and parameter learning is designed
to online estimate a system dynamics using the gradient descent method. The SORBF network can add
new hidden neurons and prune insignificant hidden neurons online. The smooth compensator is designed
to dispel the effect of minimum approximation error introduced by the neural identifier in the Lyapunov
stability theorem. In general, how to determine the learning rate of parameter adaptation laws usually
requires some trial-and-error tuning procedures. This paper proposes a dynamical learning rate approach
based on a discrete-type Lyapunov function to speed up the convergence of tracking error. Finally, the
proposed IASRNC system is applied to control two chaotic systems. Simulation results verify that the pro-
posed IASRNC scheme can achieve a favorable tracking performance.

� 2011 Elsevier Ltd. All rights reserved.

1. Introduction

If an exact model of control plants is known, there exists an
ideal controller to achieve a favorable control performance by can-
celing all the system dynamics (Slotine & Li, 1991). Unfortunately,
the mathematical model of control plants is difficult to develop
accurately. A tradeoff between stability and accuracy is necessary
for the performance of ideal controller. To attack this problem,
many researchers using intelligent control approaches to construct
advanced controllers based on neural network (NN) approximation
ability (Chauhan, Ravi, & Karthik, 2009; Chen, Lin, & Chen, 2008;
Elmas, Ustun, & Sayan, 2008; Hanbay, Turkoglu, & Demir, 2008;
Hsu, 2011; Hsu, Lin, & Lee, 2006; Kumarawadu & Lee, 2006; Peng,
2010; Zhao, 2008). The basic issue of NN-based adaptive neural
controllers provides online learning algorithms that do not require
preliminary off-line tuning. The adaptive laws are derived based on
the gradient descent method or Lyapunov synthesis method to
guarantee the system stability of the control system.

Though the NN-based adaptive neural controllers have been
widely adopted to control the unknown nonlinear system, how
to determine the learning rates of parameter adaptation laws
requires some trial-and-error tuning procedures. For a small learn-
ing rate, convergence of tracking error can be easily guaranteed,

but with slow convergence speed. If the learning rate is too large,
the parameter adaptation laws may lead to instability of the con-
trol systems. To solve this problem, a dynamical learning rate is
determined (Lin & Peng, 2004; Lin, Huang, & Chou, 2007; Wai &
Chuang, 2010; Yeh & Tsai, 2010). A discrete-type Lyapunov func-
tion is utilized to determine the learning rates of parameter
adaptation laws (Lin & Peng, 2004; Yeh & Tsai, 2010). However,
an exact calculation of Jacobian term cannot be determined due
to the unknown control dynamics. An evolutionary computation
is used to determine the learning rates of parameter adaptation
laws (Lin et al., 2007; Wai & Chuang, 2010); however, the compu-
tation loading is heavy and lacks real-time adaptation ability.

Another drawback of the NN-based adaptive neural controllers
is how to determine the network structure of the used NN. It is dif-
ficult to consider the balance between a number of hidden neurons
and a desired performance. If the number of hidden neurons is cho-
sen too large, it will be great than necessary so that the computa-
tion loading is not suitable for practical applications. If the number
of hidden neurons is chosen too small, the learning performance
may be not good enough to achieve a desired control performance
due to the inevitable approximation error. To solve this problem, a
self-organizing structure approach is proposed for the structure
adaptation of NN (Bortman & Aladjem, 2009; Chen, 2009; Hsu,
2008; Hsu & Cheng, 2008; Huang, Saratchandran, & Sundararajan,
2005; Leung & Tsoi, 2005; Yeh & Chang, 2006). A new hidden neu-
ron is generated when a input signal is too far from the current
hidden neurons and an existing hidden neuron is canceled when
the hidden neuron is insignificant.
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This paper is to design an indirect adaptive self-organizing RBF
neural control (IASRNC) system which is composed of a feedback
controller, a neural identifier and a smooth compensator. The neu-
ral identifier containing a self-organizing RBF (SORBF) network is
designed to online estimate the system dynamics and the smooth
compensator is designed to dispel the effect of minimum approxi-
mation error introduced by the neural identifier. An online param-
eter training methodology, using the gradient descent method and
Lyapunov stability theorem, is proposed to increase the learning
capability of the SORBF identifier. Further, to speed up the conver-
gence of tracking error and controller parameters, analytical meth-
od based on a discrete-type Lyapunov function is proposed to
determine the dynamical learning rates of parameter adaptation
laws. Finally, the proposed IASRNC system is applied to control
two chaotic systems. Simulation results show that the proposed
IASRNC system can achieve a favorable control performance.

2. Sliding-mode control system design

A mathematical model of control plants can be expressed in the
nth-order form as

xðnÞ ¼ f ðxÞ þ u; ð1Þ

where x ¼ ½x; _x; . . . ; xðn�1Þ�T is a state vector of plants which is
assumed to be available for measurement, f(x) is a nonlinear system
dynamics which can be unknown, and u is a control input. The con-
trol objective is to find a control law so that a state trajectory x can
track a command xc closely. Define a tracking error as

e ¼ x� xc: ð2Þ

Assume that the system dynamics is known, (1) can represent a
nominal model of a nonlinear dynamic system as

xðnÞ ¼ fnðxÞ þ u; ð3Þ

where fn(x) is a mapping that represents the nominal behavior of
f(x). If uncertainties occur, i.e., parameters of system deviate from
the nominal value, the system can be modified as

xðnÞ ¼ fnðxÞ þ uþ Df ðxÞ; ð4Þ

where Df(x) denotes system uncertainties with a assumption
jDf(x)j 6 F in which F is a given positive constant. It is well known
that the major advantage of a sliding-mode control system is its
insensitivity to parameter variations and external disturbance once
the system trajectory reaches and stays on a sliding surface (Slotine
& Li, 1991). A sliding surface is defined as

s ¼ eðn�1Þ þ k1eðn�2Þ þ � � � þ kn

Z t

0
eðsÞds; ð5Þ

where ki, i = 1,2, . . . ,n are positive constants. A sliding-mode control
law is given as

usm ¼ ueq þ uht: ð6Þ

The equivalent controller ueq is represented as

ueq ¼ �fnðxÞ þ xðnÞc � k1eðn�1Þ � � � � kn�1 _e� kne ð7Þ

and the hitting controller uht is designed to guarantee system stabil-
ity as

uht ¼ �FsgnðsÞ; ð8Þ

where sgn(�) is a sign function. Substituting (6)–(8) into (4) yields

eðnÞ þ k1eðn�1Þ þ � � � þ kn�1 _eþ kne ¼ Df ðxÞ � FsgnðsÞ ¼ _s: ð9Þ

An important concept of sliding-mode control is to make the system
satisfy the reaching condition and guarantee sliding condition. Con-
sider a candidate Lyapunov function in the following form as

V1 ¼
1
2

s2: ð10Þ

Differentiating (10) with respect to time and using (9) obtain

_V1 ¼ s_s ¼ Df ðxÞs� Fjsj 6 jDf ðxÞjjsj � Fjsj ¼ �ðF � jDf ðxÞjÞjsj
6 0: ð11Þ

In summary, the sliding-mode control law in (6) can guarantee the
system stability in the sense of Lyapunov theorem (Slotine & Li,
1991). Because the system dynamics may be unknown or per-
turbed, the sliding-mode control law cannot be implemented.
Moreover, a large control gain F often causes an outcome of a large

Fig. 1. Block diagram of the IASRNC system for an unknown nonlinear system.
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