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a b s t r a c t

Flexible rotor is a crucial mechanical component of a diverse range of rotating machineries and its con-
dition monitoring and fault diagnosis are of particular importance to the modern industry. In this paper,
Bayesian belief network (BBN) is applied to the fault inference for rotating flexible rotors with attempt to
enhance the reasoning capacity under conditions of uncertainty. A generalized three-layer configuration
of BBN for the fault inference of rotating machinery is developed by fully incorporating human experts’
knowledge, machine faults and fault symptoms as well as machine running conditions. Compared with
the Naive diagnosis network, the proposed topological structure of causalities takes account of more
practical and complete diagnostic information in fault diagnosis. The network tallies well with the prac-
tical thinking of field experts in the whole processes of machine fault diagnosis. The applications of the
proposed BBN network in the uncertainty inference of rotating flexible rotors show good agreements
with our knowledge and practical experience of diagnosis.

� 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Flexible rotor has been widely used in a wide range of rotating
machineries in the modern industry, such as centrifugal compres-
sor, turbine generator, combustion and gas turbine. Therefore the
fault diagnosis of flexible rotor plays an important role in the man-
ufacture and maintenance of these machineries. With the rapid
development of modern science and technology, rotating machin-
ery is apt to develop with high rotary speed and high efficiency,
which calls for more accurate, intelligent and efficient fault
inference and diagnosis methods. In engineering, mechanical fault
diagnosis is an inverse problem of the inherent causality of causes
(faults) and effects (symptoms) and it is a complex inference
process from machine symptoms to faults. In most cases, there is
seldom fixed one-to-one correspondence between the symptoms
and faults. One type of fault may lead to several typical symptoms
while one symptom may also be caused by two or more faults.
Moreover, the diagnostic information collected sometimes is
incomplete because of the limited on-site conditions (e.g. online
measurement condition). Consequently, the fault diagnosis has of-
ten to be conducted under uncertainty or incomplete information.
This phenomenon is particularly true for rotating flexible rotors
because of the complex corresponding relationships between the
symptoms and faults and the difficulties in measuring and
collecting useful signals for diagnosis.

Fault diagnosis of mechanical or electronic components or sys-
tems is a subject of expert system applications. Recently, continuous
attempts have been made to develop intelligent expert approaches
for fault diagnosis using artificial intelligence. The notable models
include artificial neural network (Demetgul, Tansel, & Taskin,
2009; Wu & Kuo, 2009), Fuzzy Sets Theory and Inference (Saravanan,
Cholairajan, & Ramachandran, 2009; Shen, Tay, Qu, & Shen, 2000),
support vector machine (Widodo, Yang, & Han, 2007; Xian & Zeng,
2009; Zhang, Liu, Xie, & Li, 2009), Genetic Algorithms and Program-
ming (Wang, Tseng, Chen, & Chao, 2009; Zhang & Nandi, 2007) and
the hybrids of these methods (Fei & Zhang, 2009; Geng & Zhu, 2009;
Samanta, Al-Balushi, & Al-Araimi, 2003; Tran, Yang, Oh, & Tan,
2009). For instance, Wu and Kuo (2009) have developed a fault diag-
nosis system for automotive generators using an artificial neural
network (ANN). In this system, the features of the generator signals
at different engine speeds and faults were extracted by using dis-
crete wavelet transform. Then the back-propagation neural network
(BPNN) and the generalized regression neural network (GRNN) were
used to classify the synthetic fault types. For the diagnosis and
inference of valve fault in a multi-cylinder diesel engine, rough sets
theory was used to extract the useful rules by analyzing the decision
table composed of attributes extracted from the vibration signals
(Shen et al., 2000). These extracted rules were proven to be effective
in distinguishing the fault type and inspecting the dynamic charac-
teristics of the machinery. Xian and Zeng (2009) have conducted the
intelligent fault diagnosis of the rotating machinery by using a hy-
brid support vector machine (SVM). The faulty vibration signals
were first decomposed by the wavelet packet analysis. Then the
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extracted features were analyzed by the hybrid SVM for estimating
fault types. Compared to conventional back-propagation network,
the superiority of the hybrid SVM method was shown in the success
of fault diagnosis. Zhang and Nandi (2007) have also proposed the
genetic programming (GP) schemes for solving multi-class classifi-
cation problems in roller bearing fault detection. The classification
results were compared with two genetic algorithm (GA) based ap-
proaches GA/ANN and GA/SVM. Experiments showed that the pro-
posed bundled-GP scheme was strong in feature selection and was
equivalent to or outperformed the two GA-based approaches. In
the integration of fuzzy logic and neural network algorithm, Tran
et al. (2009) developed a method for fault diagnosis of induction mo-
tors based on the adaptive neuro-fuzzy inference system. In this
method, two consecutive steps were involved. A decision tree was
first used as a feature selection procedure to select valuable features
from data set. Then, the neuro-fuzzy inference system was used to
diagnose the faults of induction motors.

Though the above valuable models enabled the fault inference
and diagnosis of mechanical or electronic systems, they tend to
rely on data signals from sensors and thus are not sufficiently ro-
bust to the uncertainty and incomplete diagnostic information col-
lected. Therefore the development of a new type of expert system,
which fully tallies with the diagnostic thinking of human experts,
and is powerful in handling uncertainty and flexible in acquisition
of diagnostic knowledge, is necessary for the intelligent fault diag-
nosis of rotating flexible rotors.

In this paper, an intelligent expert system based on Bayesian
belief network is developed by making full use of human experts’
knowledge, machine faults and fault symptoms as well as machine
running conditions. Considering the characteristics of rotating
machinery, a generalized three-layer configuration of BBN is devel-
oped. The proposed topological of causalities takes account of more
practical and complete diagnostic information as compared to the
Naive diagnosis network. The remainder of this paper is organized
as follows. The fundamental theory of Bayesian belief network,
including Bayesian theorem, network topological, independence
assumption and inference algorithms, is briefly introduced in Sec-
tion 2. Section 3 presents a generalized three-layer configuration of
BBN for the fault diagnosis of rotating machineries. In Section 4,
the proposed network is applied in the fault diagnosis and uncer-
tain inference of rotating flexible rotors. Afterward, the conclusion
remarks are drawn in Section 5.

2. Bayesian belief network (BBN)

Bayesian belief network, or Bayesian network, is a kind of proba-
bilistic inference network. It represents graphically a set of nodes
(random variables) connected by directional arrows that quantify
the causal relationship between the nodes (Barrientos1 & Vargas,
1998; Pearl, 1988). Bayesian network techniques provide a powerful
tool for knowledge representation and reasoning under conditions
of uncertainty. This theory has been developed and used in many
areas, such as quality evaluation (Correa, Bielza, & Pamies-Teixeira,
2009), dynamic analysis (Barrientos1 & Vargas, 1998), cost-benefit
analysis (Lu, Bai, & Zhang, 2009), risk management (Lee, Park, & Shin,
2009), aeronautic and medical diagnosis (Charles, Linda, Katherine,
& Peter, 1997; Dey & Stori, 2005; Riascos, Simoes, & Miyagi, 2007;
Sahin, Yavuz, Arnavut, & Uluyol, 2007), as well as condition monitor-
ing (Weidl, Madsen, & Israelson, 2005).

In recent years, with the development of large-scale database
system, Bayesian network has become a popular knowledge repre-
sentation scheme for probabilistic knowledge in data mining
(Heckerman, 1997; Jaroszewicz, Scheffer, & Simovici, 2009) and
knowledge discovery (Lee & Abbott, 2003), and it has become a
powerful tool for decision support (Lauria & Duchessi, 2006).

Bayesian networks have shown superior performance as compared
to neural networks, support vector machines, decision trees, and so
forth, for several high-level classification tasks such as data mining,
fault monitoring, bioinformatics, and so forth (Mittal & Kassim,
2007).

2.1. Bayesian theorem and inference

Supposing A and B are two random events and P(B) > 0, the
probability of event A given the event B is called conditional prob-
ability and it can be written as:

PðAjBÞ ¼ PðABÞ
PðBÞ ð1Þ

in which P(AB) is called the joint probability and P(AB) =
P(B)P(AjB) = P(A)P(BjA).

Furthermore, supposing B1,B2, . . . ,Bn are a set of random vari-
ables and satisfy: (a)

Pn
i¼1Bi ¼ S where S is the certain event; (b)

they are mutually exclusive; and (c) P(Bi) > 0, i = 1,2, . . . ,n, for any
given event A, we have the following marginal probability:

PðAÞ ¼
Xn

i¼1

PðBiÞPðAjBiÞ: ð2Þ

Therefore, Bayesian theorem can be obtained by the above condi-
tion probability and marginal probability:

PðBijAÞ ¼
PðABiÞ
PðAÞ ¼

PðBiÞPðAjBiÞPn
i¼1PðBiÞPðAjBiÞ

: ð3Þ

If all items on the right hand side are called prior probabilities
and the item on the left is called the posterior probability, Bayesian
theorem actually provides a calculation method of posterior prob-
ability from prior probabilities. The simple Bayesian inference or
diagnosis is just based on this calculation for reasoning. For in-
stance, the prior probability of a particular fault Bi and the prior
conditional probability of symptom A given the fault can be esti-
mated, and thus we can compute the probability P(BijA) of fault
Bi given the symptom A.

The above case is relatively simple. If the case involves a large
number of events, the computation will be complicated and the re-
quired prior probabilities will be exponentially expanded. There-
fore, the simple Bayesian diagnosis is impractically to apply.
Bayesian network alternatively provides a feasible methodology
for handling the difficulties. This network first enables a concise
description of affairs and their complex relationships, and then
based on the assumption of independence, significantly reduces
the prior probabilities required in reasoning.

2.2. Topological of Bayesian network

Bayesian networks are graphs composed of nodes and direc-
tional arrows. Nodes in BBN represent random variables and direc-
tional arrows between pairs of nodes indicate the causal
relationships or probabilistic dependence between the linked vari-
ables. The nodes can have two or more states, and for each node,
every other node that has a direct influence on it is called a parent
of this node. The strength of relationships between the variables is
expressed as conditional probability that represents the condi-
tional probabilities of a node given the set of its immediate par-
ents. Fig. 1 shows a simple Bayesian network. The nodes without
any input arrow or predecessor are called root nodes, such as X1

and X2. X3 and X4 are the immediate parent nodes of X5 while they
are also the child nodes of X2.
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