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a b s t r a c t

The linkage methods are mostly used in hierarchical clustering. In this paper, we integrate Ordered
Weighted Averaging (OWA) operator with hierarchical clustering in order to find distances between clus-
ters. In case of using OWA operator in order to find distance between clusters, OWA acts as a generalized
case of single linkage, complete linkage, and average linkage methods. In order to illustrate the proposed
method, we handle a phylogenetic tree constructed by hierarchical clustering of protein sequences. To
illustrate the efficiency of the method, we use 2D-data set. We obtain graphs demonstrating the relation-
ships of the clusters and we calculate the root-mean-square standard deviation (RMSSDT) and R-squared
(RS) validity indices, respectively, which are frequently used to evaluate results of the hierarchical clus-
tering algorithms.

� 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Clustering is an unsupervised learning technique that aims at
decomposing a given set of elements into clusters based on simi-
larity. The basic goals are to divide dataset in such a way that ele-
ments are homogenous within groups and are different between
groups.

Since vast amounts of data has rapidly increased in bioinfor-
matics field because of genomic research, one need to use ad-
vanced computational tools to analyze and manage the data.
Clustering algorithms have been widely applied for managing
high-throughput data sets in bioinformatics, including DNA and
protein sequence data analysis (Baldacci, Golfarelli, Lumini, & Rizzi,
2006; Chan, Collins, & Kasabov, 2006; Chang & Halgamuge, 2002;
Lin & Chien, 2009).

Protein sequences that have evolutionary relationship consti-
tute a family. That is generally reflected by sequence similarity.
Therefore, all protein sequences can be organized based on their
sequence similarity. Since the aim of protein clustering is to get a
biologically meaningful partitioning, a graphical illustration called
phylogenetic tree can summarize the relationship between the
protein sequences. The methods existed on construction of phylo-
genetic tree are as follows: Neighbor-joining based (Bruno, Socci, &
Halpern, 2000; Zhang & Sun, 2008); maximum parsimony based
(Hill, Lundgren, Fredriksson, & Schio, 2005; Sridhar, Lam, Blelloch,

Ravi, & Schwartz, 2007) and maximum likelihood based (Hobolth &
Yoshida, 2005; Yang, 1997) and distance based (Lian, 2000; Sum-
ner & Jarvis, 2006). A distance based phylogenetic tree is related
to hierarchical clustering. The distance between objects can be cal-
culated by linkage methods that the most common and cheap
computational methods to divide dataset into clusters; such as sin-
gle linkage, complete linkage and average linkage. In this study, we
analyze the construction of phylogenetic tree based on Ordered
Weighted Averaging (OWA) operator, which is most commonly
used operator in multicriteria decision-making (Yager, 1988), as a
linkage method.

In this paper, the general aspect of hierarchical clustering and
OWA operator, in addition integration of OWA in hierarchical clus-
tering is given in Section 2.1. Protein sequence alignment and phy-
logenetic trees are referred in Sections 2.2 and 2.3, respectively.
The validity indices are concerned in Section 2.4. Results and dis-
cussion of the study are summarized in Section 3.

2. Methods and materials

2.1. OWA (Ordered Weighted Averaging) operator

Yager (1988) introduced an ordered weighted aggregation
(OWA) operator to aggregate distributed information. The OWA
operator plays important role in decision making problems
(Nasibov & Nasibova, 2005, 2010; Okur, Nasibov, Kilic, & Yavuz,
2009; Yager, 1988). Since aggregating functions is formed for the
situation in which all desired criteria are satisfied and the case in
which the satisfaction of any of the all desired criteria exist. An
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aggregation which lies in between these two extremes is provided
by this operator. Majority of the known averaging operators are
special cases of the OWA operator (Yager & Kacprzyk, 1999).
OWA differs from classical weighted average in that coefficients
are not associated directly with a particular attribute but rather
to an ordered position.

Definition. A mapping F: Rn ? R is called OWA operator of
dimension n associated with a weighting vector W = (w1, w2,
. . . , wn)T if

Fða1; a2; . . . ; anÞ ¼ w1að1Þ þw2að2Þ þ � � � þwnaðnÞ

� OWAW ða1; a2; . . . ; anÞ; ð1Þ

where a(i) is the ith largest element in the collection of a1, a2, . . . , an.
The weighting vector W satisfies the following constraints:

1. wi e [0, 1], 1 6 i 6 n.
2.
Pn

i¼1wi ¼ 1.

Let B = (a(1), a(2), . . . , a(n))T be the vector consisting of the argu-
ments of F in descending order. The OWA operator F with weight
vector W and an argument tuple (a1, a2, . . . , an) can be rewritten
as follows:

OWAWða1; a2; . . . ; anÞ ¼WT B: ð2Þ

There are different approaches to determine weights of the
OWA operator (Filev & Yager, 1998; Fuller & Majlender, 2003;
Xu, 2005). In the paper Xu (2005), the weight vector
W = (w1, w2, . . . , wn)T of the OWA operator is calculated as,

wi ¼
1ffiffiffiffiffiffiffiffi

2prn

p e�½ði�lnÞ
2=2r2

n �

Pn
j¼1

1ffiffiffiffiffiffiffiffi
2prn

p e�½ðj�lnÞ
2=2r2

n �
¼ e�½ðði�lnÞ

2=2r2
nÞ�

Pn
j¼1e�½ðj�lnÞ

2=2r2
n �
; i ¼ 1;2; . . . ;n;

ð3Þ

where the mean ln and standard deviation rn used, in the previous
formula, are computed, respectively, as follows:

ln ¼
1
n
� nð1þ nÞ

2
¼ 1þ n

2
; ð4Þ

rn ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn

i¼1

ði� lnÞ
2

vuut : ð5Þ

It is obvious that the conditions wi e [0, 1] and
Pn

i¼1wi ¼ 1 will be
satisfied. We will use the normal distribution function (3) to deter-
mine the weights of OWA operator in our experiments.

2.2. Hierarchical clustering

The hierarchical clustering method generates hierarchical
nested partitions of the dataset, using a dendrogram and some ter-
mination criterion similarity or dissimilarity matrix is constructed
between every pair objects.

Hierarchical clustering algorithm steps can be ordered as
follows:

Step 1. Construct n clusters each of them has only one object.
Step 2. While number of clusters is greater than 1, repeat the
steps 2a–2g:

Step 2a. Find the distances between each pair of the
objects of the clusters and construct the distance
matrix d where element dij is the linkage distance
between the clusters Ci and Cj.

Step 2b. Merge the clusters that are closer to each other
(suppose they are C1 and C2) into a new cluster C with
their elements as C1 [ C2 .
Step 2c. Find the distance between the cluster C and the
remaining clusters.
Step 2d. Delete the row and the column of the distance
matrix d corresponding to the clusters C1 and C2.
Step 2e. Mark the cluster C as C1 and place a new row
with distances between the C1 and the remaining clus-
ters into the distance matrix d.
Step 2f. Decrease one the number of clusters.

Step 3. Stop.

In hierarchical clustering, the closer two clusters are identified
and merged together as a new cluster (Keedwell & Narayanan,
2005). Single linkage, average linkage and complete linkage are
the current methods to compute the distance between new
constructed cluster and old one. All these mentioned methods take
into account the unweighting distance. Many measures have been
proposed for calculating the distances; fuzzy distance (Lian, 2000),
relative root mean square (Betancourt & Skolnick, 2001),
Lempel-Ziv complexity (Otu & Sayood, 2003). However, we use
Ordered Weighted Averaging (OWA) operator to identify the
distance value of the new merged clusters.

We mentioned above the steps of a hierarchical clustering. Step
2a has performed by computing distances (similarities) between
the new cluster and each of the old clusters. It is obvious that
the step 2a can be done in different ways, which can be single-link-
age, complete linkage, average-linkage and so on.

2.2.1. Single linkage
The distance between two clusters is equal to the shortest dis-

tance from any member of one cluster to any member of the other
cluster.

dminðC�;CÞ ¼ min
x2C�y2C

dðx; yÞ: ð6Þ

2.2.2. Complete linkage
The distance between two clusters is equal to the greatest dis-

tance from any member of one cluster to any member of the other
cluster.

dmaxðC�;CÞ ¼ max
x2C�y2C

dðx; yÞ: ð7Þ

2.2.3. Average linkage
The distance between two clusters is equal to the average of the

distance from any member of one cluster to any member of the
other cluster.

davgðC�;CÞ ¼
1

jC�jjCj
X

x2C�y2C

dðx; yÞ: ð8Þ

In this study, distance between clusters is calculated with Or-
dered Weighted Averaging (OWA) operator. Therefore, distance be-
tween all pairs (x, y) where x e C⁄ and y e C are calculated as
d(x, y) � di, i = 1, 2, . . . , z, z = |C⁄| � |C|. Then distance between two
clusters are obtained as

dOWAðC�;CÞ ¼ OWAWðd1;d2; . . . ; dzÞ ¼
Xz

i¼1

widðiÞ; ð9Þ

where the weights wi, i = 1, 2, . . . , z, of the OWA operator can be
given directly or calculated according to the any distribution
function.
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