Expert Systems with Applications 38 (2011) 1160-1170

journal homepage: www.elsevier.com/locate/eswa

Contents lists available at ScienceDirect

Expert Systems with Applications

=
Expert
Systems
with

Applications 5

An Intemational
Joumal

Supporting small teams in cooperatively building application domain models

Cesar Augusto Tacla®*, Ademir Roberto Freddo ¢, Emerson Cabrera Paraiso b Milton Pires Ramos <,

Gilson Yukio Sato?

2 Federal Technological University of Parand (UTFPR), Curitiba, Brazil
b pontifical Catholic University of Parand (PUCPR), Curitiba, Brazil
€ Parand Institute of Technology (TECPAR), Curitiba, Brazil

ARTICLE INFO ABSTRACT

Keywords:

Knowledge engineering
Collaborative systems
Multiagent system
Folksonomy

Ontology

Building application domain models is a time-consuming activity in software engineering. In small teams,
it is an activity that involves almost all participants, including developers and domain experts. In our
approach, we support the knowledge engineering activity by reusing tagging done by team participants
when they search information on the Web about the application’s domain. Team participants collaborate
implicitly when they do tagging because their individually created tags are collected and form a folkson-
omy. This folksonomy reflects their knowledge about the domain and it is the base for eliciting domain

model elements in the knowledge acquisition and conceptualization tasks in a consensual way. Experi-
ments provide evidence that our approach helps team participants to build richer domain models than
if they do not use our software tool. The tool allows the reuse of simple annotations as long as users learn
about the application’s domain.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Domain modeling is an activity present in a great number of
software development (SD) projects. It is essentially a cooperative
activity and hence an interesting field of experimentation for com-
puter supported cooperative work (CSCW). It is often the case that
developers do not know deeply the domain of the application. In
order to learn, elicit knowledge to be represented, build a concep-
tual vision of such knowledge and, finally, formalize and represent
it in a machine-readable format, developers use several sources of
information, including the experts of the domain. For instance, a SD
team developing a domain model for a tourism website has to
interview people working in this business and its potential users,
search for information in tourist guides, travel agencies and tourist
offices learning which elements are relevant for designing the sys-
tem’s use cases and how such elements are related to each other.

This is a long process since knowledge is learned in an incre-
mental way and people should commit to a certain view of the do-
main. Different people have different views of the same piece of
the domain being modeled and resulting conflicts must be man-
aged. Consequently, there is a great difference from versions of
the domain model built in the initial phases to the ones at the
end of the project.

* Corresponding author. Address: Avenida Sete de Setembro, 3165, 80230-901
Curitiba, Brazil. Tel.: +55 41 3310 4685.
E-mail address: tacla@utfpr.edu.br (C.A. Tacla).

0957-4174/$ - see front matter © 2010 Elsevier Ltd. All rights reserved.
doi:10.1016/j.eswa.2010.05.009

In a SD process, application domain models may take different
forms such as entity-relationship models, conceptual-level sche-
mas, object-oriented data models (OODM) and ontologies, the lat-
ter being adopted as reference in this work. We adopted ontologies
because they are built consensually and reaching such a consensus
demands cooperation as stated by Gruber (1993): “an ontology is a
formal, explicit specification of a shared conceptualization”.
Guarino and Giaretta (1995) consider an ontology in the artificial
intelligence (Al) sense as “a logical theory which gives an explicit,
partial account of a conceptualization”. Ontologies can be repre-
sented taking Al-based approaches (e.g. frames), logics, among oth-
ers. In this work, we assume ontologies are represented with
Description Logics (Baader, McGuinness, Nardi, & Patel-Schneider,
2003). In this logic, the representational primitives are concepts
(classes of objects), roles (binaries relations between concepts),
and individuals (instances of classes).

According to (Borgida & Brachman, 2003), all of the above
mentioned kinds of application domain models are comparable
since they rely on an object-centered view of the world including
notions like individual objects, which have relationships to
each other, and which are grouped into classes. Even notational
languages used to represent OODM and ontologies can be the
same, such as the UML (Unified Modeling Language), the similarity
among different kinds of domain models was also noted by
Studer, Benjamins, and Fensel (1998) when they present the
communalities of Software Engineering and Knowledge
Engineering.


http://dx.doi.org/10.1016/j.eswa.2010.05.009
mailto:tacla@utfpr.edu.br
http://dx.doi.org/10.1016/j.eswa.2010.05.009
http://www.sciencedirect.com/science/journal/09574174
http://www.elsevier.com/locate/eswa

CA. Tacla et al./Expert Systems with Applications 38 (2011) 1160-1170 1161

Nowadays, there is an intense research in emergence of knowl-
edge from social applications like BibSonomy,! Semantic-Media-
Wiki,>2 and Richards (2009) proposing new methods and
techniques to acquire knowledge. In this work, we apply one of
these techniques in small SD teams to support knowledge engi-
neering activity by acquiring knowledge from folksonomies.

In social applications, a personomy is produced by user tagging
activity in any social tagging system and it is formed by all tags of
the user represented in a plain structure. The collection of persono-
mies constitutes a folksonomy (Jaschke, Hotho, Schmitz, Ganter, &
Stumme, 2008). The folksonomy is dynamic as long as users learn
new things and review their personomies, including and excluding
their tags. Users can annotate resources with different tags
depending on their social or cultural backgrounds, expertise and
perception of the world (Begelman, Keller, & Smadja, 2006; Golder,
2005; Peterson, 2006; Wu, Zubair, & Maly, 2006) and thus it is an
important source of information.

Typically, small teams in SD have fewer than 10 members, and
wasteful activities can be detrimental or even lead the develop-
ment effort to failure. Pollice, Augustine, Lowe, and Madhur
(2004) describe a SD project in which members of the development
team began by identifying artifacts they felt were absolutely re-
quired, including the vision statement, risk list, development case,
use cases, test cases, project plan, glossary, and architecture. As the
development effort progressed, the team created many of these
essential artifacts informally. For example, a test plan might be
simply a sticky note attached to the wall. As the team members
stated, it was “good enough” for the team’s needs. By creating
many of their artifacts according to this principle, they avoided
waste time and attention on documentation that was not neces-
sary for delivering a stable and well-tested product.

Application domain modeling in small teams of SD is an activity
that involves practically all participants. Such activity is one among
several they develop day-to-day and it could be just partially sup-
ported by computers because there are a considerable amount of
face-to-face discussions in order to build a shared conceptual view.
Thus, the problem is how to help developers to build such models
in a cooperative way during the project. The cooperative modelling
includes (i) coping with frequent modifications on the information
sources and their influence in the current version of the domain
model, (ii) reaching consensus on the knowledge representation
structure, and (iii) tracing modeling decisions.

The general goal of our work is to support different types of activ-
ities in SD for small teams using a multiagent system (MAS). The fo-
cus of this article is specifically on the domain modeling activity. We
show evidences that a folksonomy built from personomies can help
a small team to build better ontologies than if they work without
remembering simple annotations made when they visit web pages
about an application domain. The folksonomy results from implicit
collaboration given that users tag resources individually.

This paper presents a review of the literature on CSCW for do-
main modeling, the fundamentals on ontology development, ontol-
ogy learning, ontology evolution and multiagent systems, the
proposed multiagent architecture highlighting the domain model-
ing activity, the experiments in order to evaluate the level of sup-
port offered to the users, analysis of the results, and finally, a
conclusion.

2. Related work on CSCW for domain modeling

Research on collaborative construction of knowledge has been
motivated by the difficulties related to knowledge engineering

! http://www.bibsonomy.org.
2 http://semantic-mediawiki.org/.

activity, mainly that concerning knowledge acquisition and for-
malization. There are a number of applications that provide func-
tionalities allowing users to build taxonomies, ontologies and to
populate them such as Collaborative Protégé (Tudorache et al.,
2008) and SOBOLEO.> These applications provide functionalities
related to versioning, collaborative editing, and asynchronous
communication for annotating changes on the elements of the
ontology being collaboratively edited.

Sure et al. (2002) created an environment named OntoEdit to
build ontologies collaboratively. The environment embodies a
methodology to develop ontologies and provides inference and
collaboration functionalities. OntoEdit supports the three phases
of such ontology development methodology: requirements spec-
ification, refinement and evaluation. In all the phases, ontology
engineers, domain experts and users can collaborate. All mem-
bers of the ontology development team can modify and extend
the ontology. They also are informed of such modifications,
allowing them to monitor the evolution of the development.
OntoEdit also provides mechanisms to guarantee some degree
of consistency and concurrency. To ensure consistency, a
mechanism to lock concepts, instances and relations was imple-
mented. Using such a mechanism, team members can also lock
parts of the ontology and assign different members to work in
each part.

Schaffert, Gruber, and Westenthaler (2005) present the idea of
“semantic wikis” as a tool to allow collaboration among domain
experts and developers working on ontology development. The
system also aims at improving searching and navigation by using
semantic annotation. They consider that “semantic wikis” could
facilitate the participation of non-technical users, the evolution
of the knowledge in the wiki, and the collaboration among users.
Domain experts could easily make explicit knowledge relevant to
the ontology using a wiki. Developers should help them if a more
formal representation is required.

Zhdanova (2008) presents a bottom-up approach to build
ontologies based in communities using portals. The idea is to im-
prove the services provided by the portal by using semantic web
applications. In this approach, community members build an
ontology that is potentially more relevant for the community, less
expensive and easier to update. The ontology is organized as three
different levels: individual level, community level and portal level.
Data from the individual level is used to build the community level
and data from the community level is used to build the portal
level. In such a process, a mechanism to achieve consensus is
employed. The system also counts on a mechanism to represent
a social network in which links among users are established
semantically. Zhdanova (2008) uses a bottom-up approach (folkso-
nomies) that integrates individual profiles and domain representa-
tion in order to provide better retrieval service to her users
through a portal.

Dotsika (2009) argues that ontologies and folksonomies per-
form a similar role in web content classification schemes, although
being engineered in different ways. She proposes some require-
ments for a methodology to conciliate both classification ap-
proaches and guarantee the quality of the final information
model. Dotsika discusses various existing methodologies to inte-
grate ontologies and folksonomies to conclude that they are still
in an experimental phase, they lack automation and they do not
address certain quality issues. She identifies as requirements for
a methodology to integrate folksonomies and ontologies, the qual-
ity issues, semantic enrichment, mapping completeness, trust and
ethics.

3 http://www.soboleo.com.


http://www.bibsonomy.org
http://semantic-mediawiki.org/
http://www.soboleo.com

Download English Version:

https://daneshyari.com/en/article/388619

Download Persian Version:

https://daneshyari.com/article/388619

Daneshyari.com


https://daneshyari.com/en/article/388619
https://daneshyari.com/article/388619
https://daneshyari.com

