
Image compression scheme based on curvelet transform
and support vector machine

Yuancheng Li, Qiu Yang *, Runhai Jiao
Department of Computer Science, North China Electric Power University, Beijing, China

a r t i c l e i n f o

Keywords:
Image compression
Wavelet transform
Curvelet transform
Support vector machine (SVM)

a b s t r a c t

In this paper, we propose a novel scheme for image compression by means of the second generation curv-
elet transform and support vector machine (SVM) regression. Compression is achieved by using SVM
regression to approximate curvelet coefficients with the predefined error. Based on characteristic of curv-
elet transform, we propose a new compression scheme by applying SVM into compressing curvelet coef-
ficients. In this scheme, image is first translated by fast discrete curvelet transform, and then curvelet
coefficients are quantized and approximated by SVM, at last adaptive arithmetic coding is introduced
to encode model parameters of SVM. Compared with image compression method based on wavelet trans-
form, experimental results show that the compression performance of our method gains much improve-
ment. Moreover, the algorithm works fairly well for declining block effect at higher compression ratios.

� 2009 Elsevier Ltd. All rights reserved.

1. Introduction

From early days to now, the basic objective of image compres-
sion is the reduction of size for transmission or storage while main-
taining suitable quality of reconstructed images. For this purpose,
many compression techniques, i.e., scalar/vector quantization,
differential encoding, predictive image coding, transform coding
have been introduced. Among all these, transform coding is most
efficient especially at low bit rate (Iqbal, Javed, & Qayyum, 2007).

In the past few years, wavelets and related multi-scale repre-
sentations pervade all areas of signal processing (Abdallah, Hamza,
& Bhattacharya, 2007; Liu, Yeh, Chen, & Hsu, 2004; Mallat, 1989).
The reason for the success of wavelets is the fact that wavelet bases
represent well a large class of signals, and therefore allow us to de-
tect roughly isotropic features occurring at all spatial scales and
locations. However, there has been a growing awareness to the
observation that wavelets may not be the best choice for present-
ing natural images recently. This observation is due to the fact that
wavelets are blind to the smoothness along the edges commonly
found in images. In other words, wavelet cannot provide the
‘sparse’ representation for an image because of the intrinsic limita-
tion of the wavelet. Hence, recently, some new transforms have
been introduced to take advantage of this property. The ridgelet
and curvelet transforms (Candès & Donoho, 2000) are examples
of two new transforms, which are developed to sparsely represent
natural images. They are very different from wavelet-like systems

that have been developed. Curvelet and ridgelet take the form of
basis elements which exhibit very high directional sensitivity and
are highly anisotropic. The fast discrete curvelet transform (FDCT)
(Candès & Donoho, 2004; Candès, Demanet, Donoho, & Ying, 2005)
improves upon earlier implementation – based upon the first gen-
eration of curvelet – in the sense that they are conceptually sim-
pler, faster and far less redundant.

SVM is a learning system that uses a hypothesis space of linear
functions in a high-dimensional feature space to estimate decision
surfaces directly rather than modeling a probability distribution
across training data (Perez-Cruz, Afonso-Rodriguez, & Giner,
2003). It uses support vector (SV) kernel to map the data from in-
put space to a high-dimensional feature space, which facilitates the
problem to be processed in linear form. SVs are samples that have
non-zero multipliers at the end of optimization process which is
referred to equation. SVM always finds a global minimum because
it usually tries to minimize a bound on the structural risk, rather
than the empirical risk (Burges, 1998; Burges & Schoclkopf, 1997;
Seo, 2007; Trontl, Smuc, & Pevec, 2007).

In this paper, we present a novel scheme for image compression
based on the second generation curvelet transform and support
vector machine (SVM) regression. In the proposed method, the ori-
ginal image is first decomposed into curvelet coefficients by using
the second generation curvelet transform. Then different scales of
quantized coefficients are selected for arithmetic coding and entro-
py coding. The lowest sub-band is encoded by differential pulse
code modulation (DPCM) for including a large amount of image en-
ergy. The finer scale sub-bands are compressed by SVM regression,
which approximates the curvelet coefficients using a fewer support
vectors and weights. And some of the finer scale sub-bands are
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discarded directly due to containing a little amount of energy and
having little noticeable effect on the image quality.

The remainder of the paper is organized as follows: Sections 2
and 3 discuss the theoretical basis of curvelet and SVM regression.
In Sections 4 and 5, implement of the compression algorithm is de-
scribed in detail. Section 6 gives the experimental results. Conclu-
sion and orientations for future works are discussed in Section 7.

2. The second generation of curvelet transform

The curvelet transform has gone through two major revisions.
The first curvelet transform (commonly referred to as the ‘‘curvelet
99” transform now) used a complex series of steps involving the
ridgelet analysis of the radon transform of an image (Candès &
Donoho, 2000). The performance was exceedingly slow. Soon after
their introduction, researchers developed numerical algorithms for
their implementation (Donoho & Duncan, 2000), and reported on a
series of practical successes (Starck, Murtagh, Candès, & Donoho,
2003).

Now curvelets have actually been redesigned in an effort to
make them easier to use and understand. In this new method,
the use of the ridgelet transform was discarded, thus reducing
the amount of redundancy in the transform and increasing the
speed considerably. The second generation curvelet transform is
considerably simpler, faster and less redundant than the ‘‘curvelet
99” transform.

2.1. Continuous-time curvelet transforms

We work throughout in two dimensions, i.e., R2, with spatial
variable x, with x a frequency-domain variable, and with r and h
polar coordinates in the frequency-domain.

We start with a pair of windows W(r) and V(t), which we will
call the ‘‘radial window” and ‘‘angular window”, respectively.
These are smooth, non-negative and real-valued, with W taking po-
sitive real arguments and supported on r 2 (1/2, 2) and V taking
real arguments and supported on t 2 [�1, 1].

For each j P j0, we introduce the frequency window Uj defined
in the Fourier domain by

Ujðr; hÞ ¼ 2�3j=4Wð2�jrÞV 2bj=2ch
2p

 !
ð1Þ

where bj=2c is the integer part of j/2.
According to the formula (1), Uj is a polar ‘‘wedge” window, as

show in Fig. 1.

Define the waveform uj(x) by means of its Fourier transform.
We may think uj(x) as a ‘‘mother” curvelet in the sense that all
curvelets at scale 2�j are obtained by rotations and translations
of uj(x). Introduce the equispaced sequence of rotation angles
hl ¼ 2p � 2�bj=2c � l with l = 0, 1, . . . such that 0 6 hl < 2p, and the se-
quence of translation parameters k = (k1, k2) 2 Z2.

With these notations, we define curvelets by

uj;l;kðxÞ ¼ u Rhl
x� xj;l

k

� �� �
ð2Þ

where Rh is the rotation by h radians.
A curvelet coefficient is then simply the inner product between

an element f 2 L2(R2) and a curvelet uj,l,k,

cðj; l; kÞ :¼ hf ;uj;l;ki ¼
Z

R2
f ðxÞuj;l;kðxÞdx ð3Þ

Reconstruction formula is

f ¼
X
j;l;k

hf ;uj;l;kiuj;l;k ð4Þ

2.2. Digital curvelet transforms

In the continuous-time definition (3), the window Uj smoothly
extracts frequencies near the dyadic corona and near the angle.
Coronae and rotations are not especially adapted to Cartesian ar-
rays. Instead, it is convenient to replace these concepts by Carte-
sian equivalents; here, ‘‘Cartesian coronae” based on concentric
squares (instead of circles) and shears, as show in Fig. 2.

Define the ‘‘Cartesian” windoweUjðxÞ :¼ fW jðxÞVjðxÞ ð5ÞfW jðxÞ is a window of the form

fW jðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2

jþ1ðxÞ �u2
j ðxÞ

q
; j P 0 ð6Þ

where u is defined as the product of low-pass one-dimensional
windows

ujðx1;x2Þ ¼ uð2�jx1Þuð2�jx2Þ ð7Þ

The function u obeys 0 6 u 6 1, might be equal to 1 on [�1/2, 1/
2], and vanishes outside of [�2, 2]. The digital curvelet transform
coefficient is obtained by

cðj; l; kÞ ¼
Z

f̂ ðxÞeUj S�l
hl
x

� �
e

l S�T
hl

b;ax

D E
dx ð8Þ

Fig. 1. Continuous curvelet support in the frequency domain. Fig. 2. Digital curvelet tiling of space and frequency.
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