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a b s t r a c t

In this paper, using the concepts of field theory and potential functions a sub-optimal non-parametric
algorithm for clustering of convex and non-convex data is proposed. For this purpose, equipotential sur-
faces, created by interaction of the potential functions, are applied. Equipotential surfaces are the geo-
metric location of the points in the space on which the potential is constant. It means all points in
each surface were affected the same by the field. Regarding this concept and other characteristics of equi-
potential surfaces, the outcome of this method will be an optimal solution for the clustering problem. But
with regard to the existence of several parameters requiring to be set in the algorithm, finding the global
optimal solution leads to a high computational complexity and therefore is not practical. Thus by apply-
ing some considerations and approximations, the resulting outcome will be a sub-optimal solution, while
appropriate setting of the parameters causes the result to be closer to the global optimal solution. The
advantage of this method is that it does not need any external parameter setting, such as number of clus-
ters. To this end, an automatic parameter setting algorithm is suggested based on an optimal clustering
index. Simulation results for a number of standard datasets, illustrate the superb performance of this
method, especially for non-convexly scattered data. All mentioned characteristics of this method are
widely demanded in different scientific areas. In this case it has been utilized in the well-known Point
Location Problem (PLP) to reduce computational complexity.

� 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Clustering, as an unsupervised pattern classification method,
has an important role in data analysis and refinement. Classifica-
tion, in general, has a wide domain of applications. It includes all
from biology and biomedical imaging sciences to military and
archeology applications. According to the sensitiveness and limita-
tions of some mentioned applications, such as medical and military
applications, data with certain classes for use in supervised classi-
fication algorithms, are not simply available. Therefore, obtaining
powerful and reliable unsupervised classification algorithms are
very important. So in the recent decades, clustering problem as a
tool for pattern analysis, classification, decision making and infor-
mation extraction and retrieval, has attracted the attention of
many researchers. Several approaches and points of view are pre-
sented in the literature. Each of these approaches is based on a cer-
tain criterion, and has its own advantages and disadvantages. In

general, a comprehensive method and criterion for optimal cluster-
ing of any kind of data does not exist.

In Dubes et al. (1976), the comparison of different clustering
algorithms was done using the criteria presented in Fisher et al.
(1971). A review of the results of applying some existing limita-
tions on data sources to enhance the clustering process perfor-
mance was done by Titterington et al. (1985). Limitations applied
in this method are based on the combination of an unknown num-
ber of probability density functions with multivariable Gaussian
functions, in which clustering tries to extract the probability den-
sity functions and their parameters. The development of clustering
applications is presented for pattern recognition by Anderberg
(1973), image processing by Jain et al. (1996) and information re-
trieval by Salton (1991) and Rasmussen (1992).

General requirements of a data clustering system are: scalability,
ability to recognize different shape, size and density clusters, robust-
ness versus noise and disturbance, least number of input parame-
ters, etc. Based on these criteria, efficiency and performance of
clustering algorithms are determined. As a result, old hierarchical
clustering algorithms are of very high computational complexity
and qualitatively weak (George & et al., 1999). For instance, Com-
plete-Link method is biased for spherical clusters and Single-Link
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undertakes chaining (Oyang, 2001), while newer clustering tech-
niques, combining hierarchical and partitioning methods (Gan,
2003; Gan et al., 2003), result in more quality and less computational
complexity. A hybrid genetic fuzzy k-modes algorithm has been pro-
posed by Gan, Wu, and Yang (2009). They have optimized fuzzy k-
modes clustering algorithm using GA, to avoid being stuck in local
optima of the k-modes clustering. Hsu and Huang (2008) have pre-
sented a learning based algorithm to cluster data with either cate-
gorical or numeric values. They have used a modified version of an
adaptive resonance theory (ART) unsupervised neural network for
this purpose. Wang and et al. (2009) have also presented a clustering
algorithm based on the extension theory and genetic algorithm, EGA.

One of the weak sides of most clustering algorithms is the chal-
lenging case of non-convexly scattered data and the discussion of
how each algorithm behaves in such a circumstance.

Different metrics for clustering analysis have been proposed in
different works, such as entropy, purity and mutual information.
Park and Jun (2009) have proposed a k-means-like algorithm,
known as k-medoid, which is efficient in the complexity point of
view. The authors have proposed a Random Index to evaluate the
performance of the clustering. Wei, Lee, and Hsu (2003) have done
an empirical comparison of some partition-based clustering tech-
niques. They have introduced some characteristics of the data such
as data size, number of clusters, cluster distinctness, cluster asym-
metry and data randomness. They have analyzed the effects of
changes in each of these parameters in the clustering results. Also
Wu et al. (2009) have introduced some cluster validation measures
to be used to evaluate k-means clusters. Normalized variation of
information (VI), van Dongen criterion (VD) and Mirkin metric
(M) are the measures used as cluster quality quantifiers. They
showed that using these metrics can avoid bias in the clustering
process. All these metrics and cluster quality measure used in
these works are for convex data sets. Some studies (Mitra, Pal, &
Siddiqi, 2003; Pal, Ghosh, & Uma Shankar, 2000) have introduced
metrics also used for non-convex data clusters. Such a same metric
is used in this paper and will be explained more, later.

In this paper, using the idea of potential functions and equipo-
tential surfaces arising from fields’ interaction a clustering method
for both convex and non-convex data is presented. In this method,
a potential function is assigned to each data sample. Then, by the
fields’ interactions in feature space and extraction of the equipo-
tential surfaces the clustering procedure can be conducted. It is
very important to know that most of the unsupervised classifica-
tion techniques are based on the degree of similarity in data sam-
ple feature vector, such that members of a data class generally
have the most similarity. Regarding this and the fundamental con-
cepts of fields’ theory in physic, applying the equipotential surfaces
as the clusters discriminant boundaries the optimal solution would
be achieved. This is because the equipotential surfaces introduce
the geometric locations in the space on which all points have the
same average membership or similarity to the class inside and out-
side the boundary. Thus, by proper setting of the reference poten-
tial level as the decision boundary, optimal solution could be
obtained. Finally, using cluster measures a simple algorithm is pre-
sented which can set the reference potential level automatically.
This approach determines the number of clusters itself. So, no
parameters are left to be set externally. If one wants to determine
the number of the clusters, he/she can change the reference poten-
tial by trial and error. Moreover, the proposed method enables us
to construct a hierarchical non-parametric data clustering which
is widely demanded in different areas. As an application, this
method has been used to reduce computational complexity of
the Point Location Problem (PLP) which is the most time consum-
ing part in the Explicit Model Predictive Control (Bayat et al., 2009).

This paper is organized as follows: in Section 2 concepts and
some definitions used in the subsequent sections are brought up.

Then, in Section 3 potential functions are presented. After that
using the potential functions concept, the clustering algorithm is
demonstrated in Section 4. Finally, Section 5 illustrates some
examples pondering the performance of the proposed algorithm.

2. Mathematical background and definitions

As described above, the method presented in this paper is based
on the concept of field, which is one of the basics in Physics and has
a vast number of applications. Different kinds of fields on Physics
include magnetic, electric, gravity, and nucleus power fields.
Although each of these instances has own different definitions,
the common concept relating them is that instead of studying
the mutual interaction between components (electric particles,
for example), we can use the influence of the field on the compo-
nents in that working set. In what follows, we utilize this simple
concept to extract an optimal method for data clustering. The fol-
lowing definitions are evident and used in the algorithm definition.

Definition 1. Space ðD; k � kÞ in linear vectors set D 2 Rn and real
function k � k : D! Rþ are called a norm space if all following
conditions fulfill:

(i) kXk � 0; 8X 2 D,
(ii) kXk ¼ 0() X ¼ 0; 8X 2 D,

(iii) kaXk ¼ jaj � kXk; 8X 2 D; a 2 R,
(iv) kXþ Yk � kXk þ kYk; 8X; Y 2 D.

Definition 2. Assume i ¼ 1; . . . ;N; j ¼ 1; . . . ;n; D 2 Rn and
D ¼ fXi 2 RnjXi ¼ ðxi1; . . . ; xinÞ; xij 2 Rg, then the norm space
ðD; k � k2Þ is called a limited norm space relative to k � k2 if and only
if there exists a scalar 0 < h <1 such that:

kXik2 � h for all Xi 2 D where kXik2
2 ¼

Xn

j¼1

x2
ij:

Definition 3. Scalar function VðXÞ : Rn ! R is called a potential
function if:

(i) VðXÞ is a continuous smooth function in the given limited
norm space (later we will find out that this space is in fact
the feature vector space).

(ii) VðXÞ is isotopic, i.e., it has symmetric behavior and charac-
teristics in all dimensions.

(iii) If ViðXÞ is the potential function for component Xi, increasing
kX� Xik2 should cause ViðXÞ to decrease and ViðXÞ ! 0 for
each kX� Xik2 !1.

In what follows, assuming that the space regarding the feature
vector in the clustering problem is a limited norm space, clustering
algorithm based on the potential function could be extracted.

3. Establishing the proper potential function

Once more assume a vector space with limited norm for the fea-
ture vector:

D ¼ fXi 2 RnjXi ¼ ðxi1; . . . ; xinÞ; xij 2 Rg; i ¼ 1; . . . ;N;

j ¼ 1; . . . ;n ð1Þ

where Xi 2 Rn is the feature vector for the ith sample, and xij 2 R is
the jth feature in the ith feature vector. Also ‘N’ is the number of
patterns and ‘n’ the number of features for each pattern.
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