
An expert system for determining candidate software classes for refactoring

Yasemin Kosker *, Burak Turhan, Ayse Bener
Dept. of Computer Engineering, Bogazici University, 34342 Istanbul, Turkey

a r t i c l e i n f o

Keywords:
Refactoring
Software metrics
Naive Bayes
Refactor prediction

a b s t r a c t

In the lifetime of a software product, development costs are only the tip of the iceberg. Nearly 90% of the
cost is maintenance due to error correction, adaptation and mainly enhancements. As Lehman and Belady
[Lehman, M. M., & Belady, L. A. (1985). Program evolution: Processes of software change. Academic Press
Professional.] state that software will become increasingly unstructured as it is changed. One way to
overcome this problem is refactoring. Refactoring is an approach which reduces the software complexity
by incrementally improving internal software quality. Our motivation in this research is to detect the
classes that need to be rafactored by analyzing the code complexity. We propose a machine learning
based model to predict classes to be refactored. We use Weighted Naïve Bayes with InfoGain heuristic
as the learner and we conducted experiments with metric data that we collected from the largest GSM
operator in Turkey. Our results showed that we can predict 82% of the classes that need refactoring with
13% of manual inspection effort on the average.

� 2008 Elsevier Ltd. All rights reserved.

1. Introduction

Refactoring is an approach to improve the design of a software
without changing its external behaviour which means it always
gives the same output with the same input after the change is ap-
plied (Fowler, Beck, Brant, Opdyke, & Roberts, 2001). As the project
gets larger, the complexity of the classes increase and the mainte-
nance becomes harder. Also, it is not easy or practical for develop-
ers to refactor a software project without considering the cost and
deadline of the project. In general software refactoring compose of
these phases (Zhao & Hayes, 2006):

� Identify the code segments which need refactoring.
� Analyze the cost/ benefit effect of each refactoring.
� Apply the refactorings.

Since developers carry out these processes, a proper tool sup-
port can decrease the cost and increase the quality of the software.
There are some commercial tools that enables refactoring, however
there is still a need for process automation (Simon & Lewerentz
2001). The objective of refactoring is to reduce the complexity of
certain code segments such as methods or classes. Developers
refactor a code segment in order to make it simpler or decrease
its complexity such as extracting a method and then calling it. A
code segment’s complexity can increase due to its size or logic as
well as its interactions with other code segments (Zhao & Hayes,
2006).

In this paper we focus on the automatic prediction of refactor-
ing candidates for the same purposes mentioned above. We treat
refactoring as a machine learning problem and try to predict the
classes which are in need of refactoring in order to decrease the
complexity, maintenance costs and bad smells in the project. We
have inspired by the prediction results of Naïve Bayes and
Weighted Naïve Bayes learners in defect prediction research (Tur-
han & Bener, 2007). In this research we use class level information
and define the problem as two way classification: refactored and
not-refactored classes. We then try to estimate the classes that
need refactoring.

The rest of the paper is organized as follows. Section 2 presents
related work. In Section 3 we explain the Weighted Naïve Bayes
algorithm. In Section 4 we present our experimental setup to pre-
dict classes in need of refactoring. We discuss the evaluation crite-
ria in Section 5. Results are presented and discussed in Section 6,
and the conclusion and future work are presented in Section 7.

2. Related work

Welker and Oman (1995) suggested measuring software’s
maintainability using a Maintainability Index (MI) which is a com-
bination of multiple metrics, including Halstead metrics, McCabe’s
cyclomatic complexity, lines of code, and number of comments.

Hayes and Zhao (2005) introduced and validated that the RDC
ratio (the sum of requirement and design effort divided by code ef-
fort) is a good predictor for maintainability. Fowler et al. (2001)
suggested using a set of bad smells such as long method to decide
when and where to apply refactoring.

0957-4174/$ - see front matter � 2008 Elsevier Ltd. All rights reserved.
doi:10.1016/j.eswa.2008.12.066

* Corresponding author. Tel.: +90 212 3597227; fax: +90 212 2872461.
E-mail address: yasemin.kosker@boun.edu.tr (Y. Kosker).

Expert Systems with Applications 36 (2009) 10000–10003

Contents lists available at ScienceDirect

Expert Systems with Applications

journal homepage: www.elsevier .com/locate /eswa

mailto:yasemin.kosker@boun.edu.tr
http://www.sciencedirect.com/science/journal/09574174
http://www.elsevier.com/locate/eswa


Mens, Tourwé, and Muñoz (2003) designed a tool to detect
places that need refactoring and decide which refactoring should
be applied. They did so by detecting the existence of ‘‘bad smells”
using logic queries. Zhao & Hayes (2006) introduced a cost-benefit
analysis to prioritize the identified classes with bad smells.

Our approach differs from the above approaches since we treat
the prediction of candidate classes for refactoring as a data mining
problem. We use Weighted Naïve Bayes (Turhan & Bener, 2007),
which is an extension to the well-known Naïve Bayes algorithm
in order to predict the classes which are in need of refactoring
(Kosker, Bener, & Turhan, 2008).

3. Weighted Naïve Bayes

The Naïve Bayes classifier, currently experiencing a renaissance
in machine learning, has long been a core technique in information
retrieval (Lewis, 1998). Naïve Bayes models have been used for text
retrieval and classification, focusing on the distributional assump-
tions made about word occurrences in documents. In defect predic-
tion it has so far given the best results in terms of probability of
detection and probability of false alarm (which will be defined in
Section 5) (Menzies, Greenwald, & Frank, 2007). However, Naïve
Bayes makes certain assumptions that may not be suitable for soft-
ware engineering data (Turhan & Bener, 2007). Naïve Bayes treats
attributes as independent and with equal importance. Turhan and
Bener (2007) argued that some software attributes are more impor-
tant than the others. Therefore each metric must be assigned a
weight as per its importance. ‘‘Weighted Naïve Bayes” approach
showed promising outcomes that can generate better results in de-
fect prediction problems with the InfoGain and GainRatio weight
assignment heuristics. In this paper, our aim is to implement and
evaluate Weighted Naïve Bayes with InfoGain and show that it can
be used for predicting the refactoring candidates.

Naïve Bayes classifier is a simple yet powerful classification
method based on the famous Bayes’ Rule. Bayes’ Rule uses prior
probability and likelihood information of a sample for estimating
posterior probability (Alpaydin, 2004)

PðCijxÞ ¼
PðxjCiÞPðCiÞ

PðxÞ ð1Þ

To use it as a classifier, one should compute posterior probabil-
ities PðCijxÞ for each class and choose the one with the maximum
posterior as the classification result. Class posteriors in Naïve Bayes
classification are calculated as follows:

PðCijxÞ ¼ �
1
2

Xd

j¼1

x2
j �mij

Sj

 !2

þ logðP̂ðCiÞÞ ð2Þ

This simple implementation assumes that each dimension of
the data has equal importance on the classification. However, this
might not be the case in real life. For example, the cyclomatic com-
plexity of a class should be more important than the count of com-
mented lines in a class. To cope with that problem, Weighted Naïve
Bayes classifier is proposed and tested against Naïve Bayes (Ferre-
ira, Denison, & Hand, 2001; Turhan & Bener, 2007). Class posterior
computation is quite similar to Naïve Bayes only with the introduc-
tion of weights for each dimension. Formula for computing class
posteriors in Weighted Naïve Bayes is as follows:

PðCijxÞ ¼ �
1
2

Xd

j¼1

wj
x2

j �mij

sj

 !2

þ logðP̂ðCiÞÞ ð3Þ

Introduction of weights brings a flexibility that allows us to
favor some dimensions over others but it also raises a new prob-
lem: determining the weights. In our case, dimensions consist of

different attributes calculated from the source code (see Table 1)
and we need some heuristics for determining the weights (or the
importance’s) of the attributes.

In this study we use InfoGain as the heuristic for weight assign-
ment. InfoGain measures the minimum number of bits to encode
the information obtained for prediction of a class (C) by knowing
the presence or absence of a feature in data. Concisely, the infor-
mation gain is a measure of the reduction in entropy of the class
variable after the value for the feature is observed

InfoGainðx;AÞ ¼ EntropyðxÞ �
X
a2A

jx ¼ Aj
jxj Entropyðx ¼ aÞ ð4Þ

In the equations ‘‘w” denotes the weight of attribute in data set
which is calculated with

Wd ¼
InfogainðdÞ � nP

InfogainðiÞ ð5Þ

4. Experimental setup

We collect data from a local GSM operator company. The data
contains one project and its three versions. The project is imple-
mented in Java programming language and corresponds to a mid-
dleware application. We collected 26 static code attributes
including Halstead metrics, McCabe’s cyclomatic complexity and
lines of code from the project and its versions. The full metric list
is given in Table 1 and the class information of all project versions
is listed in Table 2.

We can collect the method, class and package metrics with our
Metric Parser, Prest (Turhan, Oral, & Bener, 2007), which is devel-
oped in Java. We also collect the call graph data which gives us
the information of caller and callee methods with Prest. All the
relationship between methods, classes and packages are based on
the ID’s of these objects, which is generated and assigned automat-
ically during the parsing process. Since the ID’s are generated auto-
matically, the ID’s of the objects differs from each other among
each version. So, in order to avoid this problem we use the names
of each object while comparing it with other versions. Thus, if a Re-
name type refactoring is applied to an object during a version up-
grade, then our approach could not handle this case. We leave this
case out as our future work.

Table 1
Metrics collected from the project.

CyclomaticDensity HalsteadProgramDifficulty
DecisionDensity HalsteadProgramLength
EssentialDensity HalsteadProgramLevel
BranchCount HalsteadProgramminqEffort
ConditionCount HalsteadProgrammingTirne
CyclomaticComplexity HalsteadProgramVolume
DecisionCount MaintenanceSeverity
EssentialComplexity CouplinqBetweenObjects
Loc Fanln
TotalOperands NutnberOfchildren
TotalOperators PercentageOfPubData
UniqueOperandsNumber ResponseForClass
UniqueOperatorsNumber WeightedMethods

Table 2
Attribute and class information of the project.

Name # Attributes # Classes

Trcll1 2.19 26 524
Trcll1 2.20 26 528
Trcll1 2.21 26 528
Trcll1 2.22 26 534

Y. Kosker et al. / Expert Systems with Applications 36 (2009) 10000–10003 10001



Download	English	Version:

https://daneshyari.com/en/article/388823

Download	Persian	Version:

https://daneshyari.com/article/388823

Daneshyari.com

https://daneshyari.com/en/article/388823
https://daneshyari.com/article/388823
https://daneshyari.com/

