

Available online at www.sciencedirect.com

Fuzzy Sets and Systems 300 (2016) 84-92

FUZZY sets and systems

www.elsevier.com/locate/fss

On some classes of nonlinear contractions in probabilistic metric spaces

Dorel Miheț*, Claudia Zaharia

Department of Mathematics, West University of Timişoara, Bd. V. Pârvan 4, 300223, Timişoara, Romania Received 5 December 2014; received in revised form 22 January 2016; accepted 10 April 2016 Available online 16 April 2016

Abstract

Motivated by a question in J.-X. Fang (2015) [6], we investigate the existence of fixed points for several classes of probabilistic φ -contractions under Fang-type conditions.

© 2016 Elsevier B.V. All rights reserved.

Keywords: Fixed point; Probabilistic φ -contraction; Menger probabilistic metric space

1. Introduction

According to Rus [18], a comparison function is a mapping $\varphi : [0, \infty) \to [0, \infty)$ such that φ is monotone increasing and $(\varphi^n(t))_n$ converges to 0 for all $t \ge 0$. A selfmapping f of a metric space (X, d) is called a φ -contraction if φ is a comparison function and

 $d(f(x), f(y)) \le \varphi(d(x, y)), \ \forall x, y \in X.$

A well-known theorem of Matkowski [12] states that every φ -contraction on a complete metric space is a Picard mapping, i.e., it has a unique fixed point x_* and $(f^n(x_0))_n$ converges to x_* , for any $x_0 \in X$. It is also known (see, e.g., [11,13]) that the monotonicity of φ in the above theorem cannot be dropped.

Following the deterministic case, as a natural generalization of Sehgal contractions, the class of probabilistic φ -contractions is defined by means of a function φ with suitable properties.

Definition 1.1. A probabilistic φ -contraction on a Menger PM space (X, F, Δ) is a mapping $T : X \to X$ satisfying

 $F_{Tx,Ty}(\varphi(t)) \ge F_{x,y}(t), \ \forall x, y \in X, t > 0,$

for some given function $\varphi : [0, \infty) \to [0, \infty)$.

* Corresponding author.

http://dx.doi.org/10.1016/j.fss.2016.04.005 0165-0114/© 2016 Elsevier B.V. All rights reserved.

E-mail addresses: dorel.mihet@e-uvt.ro (D. Miheţ), claudia.zaharia@e-uvt.ro (C. Zaharia).

Many papers (e.g. [4,5,9,10,19]) have identified various conditions on the mapping φ which guarantee the existence and uniqueness of the fixed points for probabilistic φ -contractions on a complete Menger PM space. Generally (see [4] and the references in [2]) the fixed point theorems for probabilistic φ -contractions were obtained under the assumption that φ is nondecreasing and $\sum_{n=1}^{\infty} \varphi^n(t) < \infty$ for any t > 0. These conditions were significantly weakened in the recent papers [2,11,6].

Theorem 1.1. (See [2,11].) Let (X, F, Δ) be a complete Menger PM space such that Δ is a continuous triangular norm of H-type. Let a function $\varphi : [0, \infty) \rightarrow [0, \infty)$ be such that, for any t > 0,

$$0 < \varphi(t) < t$$
 and $\lim_{n \to \infty} \varphi^n(t) = 0$.

If $T: X \to X$ is a probabilistic φ -contraction, then T has a unique fixed point x_* and for any $x_0 \in X$, $\lim_{n \to \infty} T^n x_0 = x_*$.

In [6] J.-X. Fang showed that the function φ only needs to satisfy the condition:

for each t > 0 there exists $r \ge t$ such that $\lim_{n \to \infty} \varphi^n(r) = 0$. (F)

The class of functions $\varphi : [0, \infty) \to [0, \infty)$ satisfying (*F*) will be denoted by Φ_w . By [6, Lemma 3.1], every $\varphi \in \Phi_w$ has the following property:

for each t > 0 there exists $r \ge t$ such that $\varphi(r) < t$.

Obviously, any function $\varphi: [0, \infty) \to [0, \infty)$ with $\lim_{n \to \infty} \varphi^n(t) = 0$, $\forall t > 0$ belongs to Φ_w .

Theorem 1.2. (See [6].) Let (X, F, Δ) be a complete Menger PM space with Δ a t-norm of H-type. If $T : X \to X$ is a probabilistic φ -contraction with $\varphi \in \Phi_w$, then T has a unique fixed point.

Fang asked whether the condition (*F*) can be used to generalize some other types of fixed point theorems. Motivated by his question, we discuss this problem for three other classes of probabilistic contractions of Sehgal type: probabilistic ($\varphi, \varepsilon - \lambda$)-contractions, probabilistic (φ, b_n)-contractions and probabilistic ψ -contractions.

The terminology and the notations in this paper are those in [6]. For more details related to fixed point theory in probabilistic metric spaces we refer the reader to the books [1] and [8].

We only recall that a t-norm Δ is said to be of *H*-type [7] if the family of its iterates $\{\Delta^n\}_{n\in\mathbb{N}}$, given by $\Delta^0(x) = 1$, and $\Delta^n(x) = \Delta(\Delta^{n-1}(x), x)$ for all $n \ge 1$, is equicontinuous at x = 1. The following theorem provides a characterization of t-norms of *H*-type.

Theorem 1.3. (See [16].) (i) Suppose that there exists a strictly increasing sequence $(b_n)_n$ in [0, 1) such that $\lim_{n \to \infty} b_n = 1$ and $\Delta(b_n, b_n) = b_n$. Then Δ is of *H*-type.

(ii) Conversely, if Δ is continuous and of H-type, then there exists a sequence $(b_n)_n$ of idempotents of Δ as in (i).

2. Probabilistic ($\varphi, \varepsilon - \lambda$)-contractions

In this section we apply Theorem 1.2 to improve a fixed point result concerning probabilistic ($\varphi, \varepsilon - \lambda$)-contractions. It is well known that every Sehgal contraction on a complete Menger PM space (X, F, Δ) with Δ continuous has a fixed point iff Δ is of *H*-type [17,8]. A special class of Sehgal contractions having a fixed point even in complete Menger PM spaces endowed with the Łukasiewicz t-norm is given in the following

Definition 2.1. (See [14].) Let (X, F, Δ) be a Menger PM space. A mapping $T : X \to X$ is called a probabilistic contraction of $(\varepsilon - \lambda)$ -type if, for some $k \in (0, 1)$,

$$(\forall \varepsilon > 0, \forall \lambda \in (0, 1)) F_{x, y}(\varepsilon) > 1 - \lambda \Rightarrow F_{Tx, Ty}(k\varepsilon) > 1 - k\lambda.$$

More generally one defines the concept of probabilistic ($\varphi, \varepsilon - \lambda$)-contraction.

Download English Version:

https://daneshyari.com/en/article/389072

Download Persian Version:

https://daneshyari.com/article/389072

Daneshyari.com