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Abstract

We generalize Preuss’ E-connectedness to lattice-valued convergence spaces and prove the basic theory for connected sets, 
including the product theorem. We further give a suitable definition of local E-connectedness and study its properties.
© 2015 Elsevier B.V. All rights reserved.
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1. Introduction

Connectedness of topological spaces, resp. of subsets of topological spaces, was defined and studied by F. Haus-
dorff [8] already in 1914. Much of the theory remained unchanged for about 50 years after that (see e.g. [3]), until 
in the 70’s of the last century G. Preuss recognized that the characterization of a connected space by continuous 
mappings into a two-point discrete space being constant, lends itself to a useful and broader generalization, which he 
called E-connectedness [25,26].

In the realm of convergence spaces, connectedness was considered in the dissertation of B.V. Hearsey [9] but also 
in the textbook of W. Gähler [6] we find some results. Hearsey left open the question if connectedness was preserved 
by taking products also for convergence spaces. This was resolved in the affirmative by R. Vainio [29], who, in the 
sequel, applied Preuss’ concept of E-connectedness to various types of convergence spaces [30–32].

In lattice-valued topology, right from the beginning, connectedness was studied. There are several ways of gener-
alizing the classical definition and different concepts resulted, see e.g. [12,23,27,28]. Lowen and Srivastava applied 
Preuss’ connectedness concept to stratified [0, 1]-topological spaces [24]. Also local connectedness was studied in 
lattice-valued topological spaces, see e.g. [20].

In this paper, we will work in the realm of lattice-valued convergence spaces, where the lattice L is given by a 
complete Heyting algebra [14,15]. We apply Preuss’ connectedness concept here and prove all basic results, including 
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the product theorem. We further give a suitable definition of local E-connectedness, generalizing a corresponding 
definition from convergence spaces (see e.g. [6]) and show that the important properties, like preservation under final 
constructions, under open subspaces or the productivity, are valid with our definition.

The paper is organised as follows. We first collect, in Section 2, the necessary theory on lattices, lattice-valued 
filters and lattice-valued convergence spaces. Section 3 then treats two connectedness concepts for lattice-valued 
convergence spaces, while the next section generalizes these to Preuss’ concept of E-connectedness. Section 5 then 
studies the properties of E-connected subsets. Local E-connectedness is defined and studied in Section 6. Finally we 
draw some conclusions.

2. Preliminaries

We consider in this paper frames, i.e. complete lattices L (with bottom element ⊥ and top element �) for which the 
infinite distributive law 

∨
j∈J (α ∧ βj ) = α ∧ ∨

j∈J βj holds for all α, βj ∈ L (j ∈ J ). In a frame L, we can define an 
implication operator by α → β = ∨{γ ∈ L : α ∧ γ ≤ β}. This implication is then right-adjoint to the meet operation, 
i.e. we have δ ≤ α → β iff α ∧ δ ≤ β . A complete lattice L is completely distributive if the following distributive laws 
are true.
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It is well known that, in a complete lattice, (CD1) if and only if (CD2). In any complete lattice we can define the 
wedge-below relation α � β if for all subsets D ⊆ L such that β ≤ ∨

D there is δ ∈ D such that α ≤ δ. Then α ≤ β

whenever α � β and α � ∨
j∈J βj iff α � βi for some i ∈ J . A complete lattice is completely distributive if and only 

if we have α = ∨{β : β � α} for any α ∈ L, see e.g. Theorem 7.2.3 in [1]. An element α ∈ L in a lattice is called 
prime if β ∧ γ ≤ α implies β ≤ α or γ ≤ α. For more results on lattices we refer to [7].

For notions from category theory, we refer to the textbook [2].
For a frame L and a set X, we denote the set of all L-sets a, b, c, . . . : X −→ L by LX . We define, for α ∈ L and 

A ⊆ X, the L-set αA by αA(x) = α if x ∈ A and = ⊥ else. In particular, we denote the constant L-set with value 
α ∈ L by αX and �A is the characteristic function of A ⊆ X. The operations and the order are extended pointwisely 
from L to LX .

A mapping F : LX −→ L is called a stratified L-filter on X [11] if (F1) F(�X) = � and F(⊥X) = ⊥, 
(F2) F(a) ≤ F(b) whenever a ≤ b, (F3) F(a) ∧ F(b) ≤ F(a ∧ b) and (Fs) F(αX) ≥ α for all a, b ∈ LX , α ∈ L. 
A typical example is, for x ∈ X, the point L-filter [x] defined by [x](a) = a(x) for all a ∈ LX . We denote the 
set of all stratified L-filters on X by F s

L(X) and order it by F ≤ G if for all a ∈ LX we have F(a) ≤ G(a). If 
F ≤ G, we call G finer than F . Maximal stratified L-filters in this order exist and are called stratified L-ultrafilters, 
and for every stratified L-filter there is a finer stratified L-ultrafilter, cf. [11]. For a family of filters Fi (i ∈ J ), 
the infimum in the order is given by (

∧
i∈J Fi )(a) = ∧

i∈J Fi (a) for all a ∈ LX . The supremum, however, only 
exists if Fi1(a1) ∧ Fi2(a2) ∧ . . . ∧ Fin(an) = ⊥ whenever a1 ∧ a2 ∧ . . . ∧ an = ⊥X . In this case it is given by 
(
∨

i∈J Fi )(a) = ∨{Fi1(a1) ∧ Fi2(a2) ∧ . . . ∧ Fin (an) : a1 ∧ a2 ∧ . . . ∧ an ≤ a}, see [11]. Consider now a map-
ping f : X −→ Y . For F ∈F s

L(X) then f (F) ∈ F s
L(Y ) is defined by f (F)(b) = F(f ←(b)) with f ←(b) = b ◦ f for 

b ∈ LX , [11]. For G ∈ F s
L(Y ) we define f ←(G)(a) = ∨{G(b) : f ←(b) ≤ a}. If G(b) = ⊥ whenever f ←(b) = ⊥X , 

then f ←(G) ∈ F s
L(X), see [14]. We will need the following two examples later. Firstly, if M ⊆ X we define iM :

M −→ X, iM(x) = x. In case of existence, we denote, for F ∈ F s
L(X), FM = i←M (F). Secondly, for sets Xi (i ∈ J ), 

we denote the projections pj : ∏
i∈J Xi −→ Xj and define the stratified L-product filter

∏
i∈J Fi = ∨

i∈J p←
i (Fi ), 

see [14]. The following result follows directly from the definition.

Lemma 2.1. Let Fi ∈ F s
L(Xi) for i ∈ J . Then, for a ∈ L

∏
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}
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