

Available online at www.sciencedirect.com

sets and systems

[Fuzzy Sets and Systems 299 \(2016\) 98–104](http://dx.doi.org/10.1016/j.fss.2015.10.008)

www.elsevier.com/locate/fss

A note on the superadditive and the subadditive transformations of aggregation functions

Alexandra Šipošová

Slovak University of Technology, Faculty of Civil Engineering, Department of Mathematics and Descriptive Geometry, Radlinského 11, *810 05 Bratislava, Slovakia*

Received 4 March 2015; received in revised form 26 October 2015; accepted 28 October 2015

Available online 2 November 2015

Abstract

We expand the theoretical background of the recently introduced superadditive and subadditive transformations of aggregation functions. Necessary and sufficient conditions ensuring that a transformation of a proper aggregation function is again proper are deeply studied and exemplified. Relationships between these transformations are also studied. © 2015 Elsevier B.V. All rights reserved.

Keywords: Aggregation function; Subadditive transformation; Superadditive transformation

1. Introduction

Motivated by applications in economics, subadditive and superadditive transformations of aggregation functions on $R^+ = [0, \infty)$ have been recently introduced in [\[4\].](#page--1-0) Formally, both these transformations can be introduced on the improper real interval $[0, \infty]$.

Definition 1. A mapping $A : [0, \infty]^n \to [0, \infty]$ is called an $(n$ -ary) aggregation function if $A(0, \ldots, 0) = 0$ and A is increasing in each coordinate. Further, *A* is called a proper (*n*-ary) aggregation function if it satisfies the following two additional constraints:

(i) $A(\mathbf{x}) \in [0, \infty)$ for some $\mathbf{x} \in [0, \infty]^n$,

(ii) $A(\mathbf{x}) < \infty$ for all $\mathbf{x} \in [0, \infty]^n$.

Though for real applications we only need proper aggregation functions (in fact, their restriction to the domain [0*,*∞[*n*), a broader framework of all (*n*-ary) aggregation functions is of advantage in a formal description of our results, making formulations and expressions more transparent. Observe that our framework is broader than the concept of aggregation functions on $[0, \infty]$ as introduced in [\[1,3\],](#page--1-0) which does not cover Sugeno integral based aggregation

<http://dx.doi.org/10.1016/j.fss.2015.10.008> 0165-0114/© 2015 Elsevier B.V. All rights reserved.

E-mail address: [alexandra.siposova@stuba.sk.](mailto:alexandra.siposova@stuba.sk)

functions, for example. We denote the class of all *n*-ary aggregation functions by A*n*, and the class of all *n*-ary proper aggregation functions by P_n .

The next definition was motivated by optimization tasks treated in linear programming area and related areas $[2]$, as well as by recently introduced concepts of concave [\[5\]](#page--1-0) and convex [\[6\]](#page--1-0) integrals.

Definition 2. For every $A \in \mathcal{A}_n$ the subadditive transformation $A_* : [0, \infty]^n \to [0, \infty]$ of *A* is given by

$$
A_*(\mathbf{x}) = \inf \{ \sum_{i=1}^k A(\mathbf{y}^{(i)}) \mid \sum_{i=1}^k \mathbf{y}^{(i)} \ge \mathbf{x} \} \tag{1}
$$

Similarly, for every $A \in \mathcal{A}_n$ the superadditive transformation $A^* : [0, \infty]^n \to [0, \infty]$ of *A* is defined by

$$
A^*(\mathbf{x}) = \sup \{ \sum_{j=1}^{\ell} A(\mathbf{y}^{(j)}) \mid \sum_{j=1}^{\ell} \mathbf{y}^{(j)} \le \mathbf{x} \} .
$$
 (2)

Observe that the transformation (1) was originally introduced in [\[4\]](#page--1-0) for $A \in \mathcal{K}_*^n$, where \mathcal{K}_*^n is the class of all *n*-ary proper aggregation functions (restricted to $[0, \infty]^n$) such that also A_* is proper, that is, $A_* \in \mathcal{P}_n$. Similarly, A^* given by (2) was originally introduced in [\[4\]](#page--1-0) only for $A \in \mathcal{K}_n^*$, where \mathcal{K}_n^* is the class of all $A \in \mathcal{P}_n$ (restricted to $[0, \infty]^n$), so that $A^* \in \mathcal{P}_n$ as well.

Theorem 2 in [\[4\]](#page--1-0) gives a necessary and sufficient condition ensuring that a function $A \in \mathcal{P}_n$ has also the property that $A \in \mathcal{K}_n^*$. We develop this result, giving an equivalent condition. Moreover, we also characterize all the functions *A* ∈ \mathcal{P}_n such that *A* ∈ \mathcal{K}_*^n . Our approach is based on a deep study of transformations (1) and (2) on unary aggregation functions that belong to \mathcal{P}_1 . Our approach allows to show that for any $A \in \mathcal{P}_n$ we have the inequality $(A_*)^* \leq (A^*)_*$.

The paper is organized as follows. In the next section, the classes \mathcal{K}_1^* and \mathcal{K}_*^1 are completely described, showing that the properties in a neighborhood of 0 are important for characterization of elements of these classes. In Section [3,](#page--1-0) necessary and sufficient conditions for a function $A \in \mathcal{P}_n$ to belong to \mathcal{K}_n^* , or to \mathcal{K}_n^n , are given. Section [4](#page--1-0) is devoted to the study of relationships of transformations $(A_*)^*$ and $(A^*)_*$. Finally, some concluding remarks are added.

2. The one-dimensional case

We begin with basic results which show how the values of the subadditive and superadditive transformations of one-dimensional aggregation functions depend on the behavior of the functions near zero.

Theorem 1. Let h be an unary aggregation function on $[0, \infty]$ with $\liminf_{t\to 0^+} h(t)/t = a$ and $\limsup_{t\to 0^+} h(t)/t = a$ b, where $0 \le a \le b \le \infty$. Then, for every $x \in [0, \infty)$ we have $h_*(x) \le ax$ and $h^*(x) \ge bx$.

Proof. Let $x > 0$. By definitions of h_* and h^* , for every positive integer *n* we have $h_*(x) \le nh(x/n) \le h^*(x)$, that is,

$$
h_*(x) \le x \cdot \frac{h(\frac{x}{n})}{\frac{x}{n}} \le h^*(x) \tag{3}
$$

Since *h* is increasing, for every *t* such that $\frac{x}{n+1} \le t \le \frac{x}{n}$ we have

$$
\frac{h(\frac{x}{n+1})}{\frac{x}{n}} \le \frac{h(t)}{t} \le \frac{h(\frac{x}{n})}{\frac{x}{n+1}}.
$$

Applying the limits inferior and superior to these inequalities as $t \to 0^+$ and $n \to \infty$ (with $\frac{n+1}{n} \to 1$) shows that

$$
\liminf_{n \to \infty} \frac{h(\frac{x}{n})}{\frac{x}{n}} \le \liminf_{t \to 0^+} \frac{h(t)}{t} \quad \text{and} \quad \limsup_{n \to \infty} \frac{h(\frac{x}{n})}{\frac{x}{n}} \ge \limsup_{t \to 0^+} \frac{h(t)}{t} \ .
$$

Combining (3) with (4) now gives

$$
h_*(x) \le x \cdot \liminf_{t \to 0^+} \frac{h(t)}{t} = ax \quad \text{and} \quad h^*(x) \ge x \cdot \limsup_{t \to 0^+} \frac{h(t)}{t} = bx
$$

for every $x > 0$, which completes the proof. \Box

Download English Version:

<https://daneshyari.com/en/article/389083>

Download Persian Version:

<https://daneshyari.com/article/389083>

[Daneshyari.com](https://daneshyari.com)