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Abstract

We expand the theoretical background of the recently introduced superadditive and subadditive transformations of aggregation 
functions. Necessary and sufficient conditions ensuring that a transformation of a proper aggregation function is again proper are 
deeply studied and exemplified. Relationships between these transformations are also studied.
© 2015 Elsevier B.V. All rights reserved.
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1. Introduction

Motivated by applications in economics, subadditive and superadditive transformations of aggregation functions 
on R+ = [0, ∞[ have been recently introduced in [4]. Formally, both these transformations can be introduced on the 
improper real interval [0, ∞].

Definition 1. A mapping A : [0, ∞]n → [0, ∞] is called an (n-ary) aggregation function if A(0, . . . , 0) = 0 and A is 
increasing in each coordinate. Further, A is called a proper (n-ary) aggregation function if it satisfies the following 
two additional constraints:

(i) A(x) ∈ ]0, ∞[ for some x ∈ ]0, ∞[n,
(ii) A(x) < ∞ for all x ∈ [0, ∞[n.

Though for real applications we only need proper aggregation functions (in fact, their restriction to the domain 
[0, ∞[n), a broader framework of all (n-ary) aggregation functions is of advantage in a formal description of our re-
sults, making formulations and expressions more transparent. Observe that our framework is broader than the concept 
of aggregation functions on [0, ∞] as introduced in [1,3], which does not cover Sugeno integral based aggregation 
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functions, for example. We denote the class of all n-ary aggregation functions by An, and the class of all n-ary proper 
aggregation functions by Pn.

The next definition was motivated by optimization tasks treated in linear programming area and related areas [2], 
as well as by recently introduced concepts of concave [5] and convex [6] integrals.

Definition 2. For every A ∈An the subadditive transformation A∗ : [0, ∞]n → [0, ∞] of A is given by

A∗(x) = inf {
k∑

i=1

A(y(i)) |
k∑

i=1

y(i) ≥ x} (1)

Similarly, for every A ∈An the superadditive transformation A∗ : [0, ∞]n → [0, ∞] of A is defined by

A∗(x) = sup {
�∑

j=1

A(y(j)) |
�∑

j=1

y(j) ≤ x} . (2)

Observe that the transformation (1) was originally introduced in [4] for A ∈ Kn∗ , where Kn∗ is the class of all n-ary 
proper aggregation functions (restricted to [0, ∞[n) such that also A∗ is proper, that is, A∗ ∈ Pn. Similarly, A∗ given 
by (2) was originally introduced in [4] only for A ∈K∗

n, where K∗
n is the class of all A ∈Pn (restricted to [0, ∞[n), so 

that A∗ ∈Pn as well.
Theorem 2 in [4] gives a necessary and sufficient condition ensuring that a function A ∈Pn has also the property 

that A ∈ K∗
n. We develop this result, giving an equivalent condition. Moreover, we also characterize all the functions 

A ∈Pn such that A ∈Kn∗ . Our approach is based on a deep study of transformations (1) and (2) on unary aggregation 
functions that belong to P1. Our approach allows to show that for any A ∈Pn we have the inequality (A∗)∗ ≤ (A∗)∗.

The paper is organized as follows. In the next section, the classes K∗
1 and K1∗ are completely described, showing 

that the properties in a neighborhood of 0 are important for characterization of elements of these classes. In Section 3, 
necessary and sufficient conditions for a function A ∈Pn to belong to K∗

n, or to Kn∗ , are given. Section 4 is devoted to 
the study of relationships of transformations (A∗)∗ and (A∗)∗. Finally, some concluding remarks are added.

2. The one-dimensional case

We begin with basic results which show how the values of the subadditive and superadditive transformations of 
one-dimensional aggregation functions depend on the behavior of the functions near zero.

Theorem 1. Let h be an unary aggregation function on [0, ∞] with lim inft→0+ h(t)/t = a and lim supt→0+ h(t)/t =
b, where 0 ≤ a ≤ b ≤ ∞. Then, for every x ∈ ]0, ∞[ we have h∗(x) ≤ ax and h∗(x) ≥ bx.

Proof. Let x > 0. By definitions of h∗ and h∗, for every positive integer n we have h∗(x) ≤ nh(x/n) ≤ h∗(x), that is,

h∗(x) ≤ x · h(x
n
)

x
n

≤ h∗(x) . (3)

Since h is increasing, for every t such that x
n+1 ≤ t ≤ x

n
we have

h( x
n+1 )

x
n

≤ h(t)

t
≤ h(x

n
)

x
n+1

.

Applying the limits inferior and superior to these inequalities as t → 0+ and n → ∞ (with n+1
n

→ 1) shows that

lim inf
n→∞

h(x
n
)

x
n

≤ lim inf
t→0+

h(t)

t
and lim sup

n→∞
h(x

n
)

x
n

≥ lim sup
t→0+

h(t)

t
. (4)

Combining (3) with (4) now gives

h∗(x) ≤ x · lim inf
t→0+

h(t)

t
= ax and h∗(x) ≥ x · lim sup

t→0+

h(t)

t
= bx

for every x > 0, which completes the proof. �
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