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Abstract

The article presents an adaptive fuzzy control approach to the problem of control of electrostatically actuated MEMS, which 
is based on differential flatness theory and which uses exclusively output feedback. It is shown that the model of the electrostat-
ically actuated MEMS is a differentially flat one and this permits to transform it to the so-called linear canonical form. For the 
new description of the system’s dynamics the transformed control inputs contain unknown terms which depend on the system’s 
parameters. To identify these terms an adaptive fuzzy approximator is used in the control loop. Thus an adaptive fuzzy control 
scheme is implemented in which the unknown or unmodeled system dynamics is approximated by neurofuzzy networks and next 
this information is used by a feedback controller that makes the electrostatically activated MEMS converge to the desirable motion 
setpoints. This adaptive control scheme is exclusively implemented with the use of output feedback, while the state vector elements 
which are not directly measured are estimated with the use of a state observer that operates in the control loop. The learning rate 
of the adaptive fuzzy system is suitably computed from Lyapunov analysis, so as to assure that both the learning procedure for 
the unknown system’s parameters, the dynamics of the observer and the dynamics of the control loop will remain stable. The 
Lyapunov stability analysis depends on two Riccati equations, one associated with the feedback controller and one associated with 
the state observer. Finally, it is proven that for the control scheme that comprises the feedback controller, the state observer and 
the neurofuzzy approximator, an H-infinity tracking performance can be achieved. The functioning of the control loop has been 
evaluated through simulation experiments.
© 2015 Elsevier B.V. All rights reserved.
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1. Introduction

As micro and nanotechnology develop fast, the use of MEMS and particularly of microactuators is rapidly de-
ploying. One can note several systems where the use of microactuators has become indispensable and the solution of 
the associated control problems has become a prerequisite. In [1–4] electrostatic microactuators are used in adaptive 
optics and optical communications. In [5,6] microactuators are used for micromanipulation and precise positioning 
of microobjects. Several approaches to the control of microactuators have been proposed. In [7–9] adaptive control 
methods have been used. In [10,11] solution of microactuation control problems through robust control approaches 
has been attempted. In [12] backstepping control has been used, while in [13] an output feedback control scheme 
has been implemented. Additional results for the stabilization and control of microactuators have been presented in 
[14,15]. In such control systems, convergence of the state vector elements to the associated reference setpoints has 
to be performed with accuracy, despite modeling uncertainties, parametric variations of external perturbations. More-
over, the reliable functioning of the control loop has to be assured despite difficulties in measuring the complete state 
vector of the MEMS. The present paper develops a new method for the control of micro-electromechanical systems 
(MEMS) which is based on differential flatness theory. The considered control problem is a nontrivial one because 
of the unknown nonlinear dynamical model of the actuator and because of the constraint to implement the control 
using exclusively output feedback (it is little reliable and technically difficult to use sensor measurements for the 
monitoring of all state variables of the micro-actuator). The differential flatness theory control approach is based on 
an exact linearization of the MEMS dynamics which avoids the numerical errors of the approximate linearization that 
is performed by other nonlinear control methods [16–20].

First, the article shows that the dynamic model of the studied microactuator is a differentially flat one. This means 
that all its state variables and the control input can be written as functions of one single algebraic variable, which is the 
flat output, and also as functions of the flat output’s derivatives [21–25]. This change of variables (differential flatness 
theory-based diffeomorphism) enables to transform the nonlinear model of the actuator into the linear canonical 
(Brunovsky) form [26–29]. In the latter description of the MEMS, the transformed control input contains elements 
which are associated with the unknown nonlinear dynamics of the system. These are identified on-line with the use 
of neurofuzzy approximators and the estimated system dynamics is finally used for the computation of the control 
signal that will make the MEMS state vector track the desirable setpoints. Thus an adaptive fuzzy control scheme is 
implemented [30,31]. The learning rate of the neurofuzzy approximators is determined by the requirement to assure 
that the first derivative of the Lyapunov function of the control loop will be always negative.

Next, another problem that has to be dealt with was that only output feedback can be used for the implementation 
of the MEMS control scheme. The nonmeasurable state variables of the microactuator have to be reconstructed with 
the use of a state estimator (observer), which functions again inside the control loop. Thus, finally, the Lyapunov 
function for the proposed control scheme comprises three quadratic terms: (i) a term that describes the tracking error 
of the MEMS state variables from the reference setpoints, (ii) a term that describes the error in the estimation of the 
non-measurable state vector elements of the microactuator with respect to the reference setpoints, and (iii) a sum of 
quadratic terms associated with the distance of the weights of the neurofuzzy approximators from the values that give 
the best approximation of the unknown MEMS dynamics. It is proven that an adaptive (learning) control law can be 
found assuring that the first derivative of the Lyapunov function will be always negative, thus also confirming that the 
stability of the control loop will be preserved and that accurate tracking of the setpoints by the system’s state variables 
will be succeeded (H-infinity tracking performance).

The structure of the paper is as follows: in Section 2 the dynamic model of the considered MEMS (that is of an 
electrostatic microactuator) is analyzed, in Section 3 it is shown how linearization of the MEMS dynamics can be 
performed with the use of differential geometry and the computation of Lie derivatives. In Section 4 it is proven 
that the dynamic model of the electrostatic microactuator is a differentially flat one. Moreover it is shown how exact 
linearization of the MEMS model can be performed using differential flatness theory. In Section 5 the stages of 
adaptive fuzzy control for the microactuator’s model are analyzed. It is explained how differential flatness theory and 
output feedback can be used for computing finally the MEMS control input. In Section 6 Lyapunov stability analysis 
is performed for the proposed output feedback-based adaptive fuzzy control scheme. In Section 7 simulation tests are 
carried out to evaluate the performance of the adaptive fuzzy controller. Finally, in Section 8 concluding remarks are 
stated.
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