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Abstract

We provide a methodology to introduce proof search oriented calculi for a large class of many-valued logics, and a sufficient 
condition for their Co-NP completeness. Our results apply to many well known logics including Gödel, Łukasiewicz and Product 
Logic, as well as Hájek’s Basic Fuzzy Logic.
© 2015 Elsevier B.V. All rights reserved.

1. Introduction

The invertibility of rules1 in a proof system is an important feature for guiding proof search; in addition it turns 
out to be very useful to settle the computational complexity of the formalized logic. For many-valued logics, calculi 
with invertible rules (proof search oriented calculi) have been provided for all finite-valued logics. These calculi are 
defined by generalizing Gentzen sequents A1, . . . , An ⇒ B1, . . . , Bm to many placed (or labeled) sequents, each cor-
responding to a truth value of the logic, see e.g. the survey [9] ([12], for the non-deterministic case). The construction 
of these calculi, out of the truth tables of the connectives, is even computerized, see [10]. This design does not apply 
to infinite-valued logics where, excepting Gödel logic [8,5], proof search oriented calculi – when available – are in-
troduced on a logic by logic basis and their construction requires some ingenuity; this is for instance the case of the 
calculi for Łukasiewicz and Product logic [29,28,27], defined using hypersequents, which are finite “disjunctions” of 
Gentzen sequents [4,3].

An important step towards the automated construction of proof search oriented calculi for many-valued logics was 
taken in [8] with the introduction of sequents of relations, that are disjunctions of semantic predicates over formulas, 
and of a methodology to construct such calculi for all projective logics. Intuitively a logic is projective if for each 
connective �, the value of �(x1, . . . , xn) is equal to a constant or to one of the x1, . . . , xn. The methodology was 
extended in [19] to handle semi-projective logics where the value of each �(x1, . . . , xn) can also be a term of the form 
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1 The premises are derivable whenever their conclusions are.
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p(xi) with p unary function symbol and i ∈ {1, . . . , n}. Projective logics are quite interesting, but perhaps not general 
enough: among many-valued logics, only the finite-valued logics and Gödel logic are projective. Semi-projective log-
ics constitute a slightly larger class, and they capture, for instance, Nilpotent and Weak Nilpotent Minimum logic [21], 
the relevance logic RM [2] and, by considering conservative extensions, Hájek’s Basic Fuzzy Logic BL extended with 
n-contraction [14]. All semi-projective logics have a locally finite variety as their equivalent algebraic semantics while 
important many-valued logics such as Łukasiewicz logic, Product Logic and BL do not, despite the fact that they have 
suitable calculi with invertible rules [18,30,16] and are Co-NP complete. The calculi in [18,30,16] are defined using 
relational hypersequents (r-hypersequents for short) that generalize hypersequents by considering finite disjunctions 
of two different types of sequents, where Gentzen’s sequent arrow ⇒ is replaced in one by < and in the other by ≤.

In this paper we generalize r-hypersequents to disjunctions of arbitrary semantic predicates (not only < and ≤) over 
multisets of formulas, rather than single formulas as in the case of sequents of relations. We introduce a methodology 
to define r-hypersequent calculi for a large class of many-valued logics (hyperprojective logics) and identify sufficient 
conditions on these calculi that guarantee the Co-NP completeness of the formalized logics. Our methodology applies 
to projective and semi-projective logics as well as to Łukasiewicz, Product Logic and BL; it subsumes all existing 
results on sequent of relations and on r-hypersequent calculi (e.g. [8,6,19,18,30,16]), and provides a unified perspective 
on most of the known complexity results for many-valued logics. Moreover, our method can be applied to new logics 
(or already known logics not having yet proof search oriented calculi), provided that they are hyperprojective.

In a hyperprojective logic the value of each connective �(x1, . . . , xn) is defined by cases this time expressed by 
relations on multisets of constants, of terms x1, . . . , xn and of p(xi), for p unary functions and i ∈ {1, . . . , n}.

We illustrate the idea behind hyperprojective logics and the way we define r-hypersequent calculi for them with 
the example of Product Logic. For this logic, as in (the projective presentation of) Gödel Logic [8,6,7] it is natural to 
consider the relations < and ≤. Product Logic is neither projective nor semi-projective, because if x, y /∈ {0,1} then 
the product x&y depends on both x and y. The idea is to represent the product by a monoidal operation ⊕ standing 
for the union of multisets, i.e. x&y = x ⊕ y.

In general, to define invertible rules for a connective �(x1, . . . , xn) of a hyperprojective logic L we will consider 
“reductions” (based on the relations in the semantic theory of L) that act on multisets of formulas, i.e., on � ⊕
�(x1, . . . , xn), where � is a multiset, and in which the formula �(x1, . . . , xn) is decomposed into a multiset of smaller 
terms (constants, xi or p(xi)).

In the particular case of the connective x&y of Product Logic we consider the following “reduction cases”: for 
� ⊕ x&y � � as � ⊕ x ⊕ y � � and for � � � ⊕ x&y as � � � ⊕ x ⊕ y, where � denotes either < or ≤. Our 
calculus for Product Logic will then contain r-hypersequents consisting of disjunctions of sequents of the form � < �

or � ≤ �, where � and � are multisets of formulas. As in the case of hypersequents [4,3] the disjunction will be 
denoted by “|” and the union of multisets by “,”. With this notation we have that φ&ψ, � � � reduces (and it is 
indeed equivalent to) to φ, ψ, � � � and � � �, φ&ψ reduces to � � �, φ, ψ , which naturally lead to the following 
left and right rules for the connective & w.r.t. the relation � (below H stands for an arbitrary r-hypersequent)

H |φ,ψ,� � �

H |φ&ψ,� � �

H |� � �,φ,ψ

H |� � �,φ&ψ

Now since

x ∧ y =
{

x if x ≤ y

y if y < x
x ∨ y =

{
y if x ≤ y

x if y < x

we have:

• �, φ ∨ ψ � � reduces to ψ < φ|�, ψ � � and to ψ ≤ φ|�, φ � �;
• � � �, φ ∨ ψ reduces to ψ < φ|� � �, ψ and to φ ≤ ψ |� � �, φ;
• �, φ ∧ ψ � � reduces to ψ < φ|�, φ � � and to φ ≤ ψ |�, ψ � �;
• � � �, φ ∧ ψ reduces to ψ < φ|� � �, φ and to φ ≤ ψ |� � �, ψ .

Finally, recalling that in Product Logic

x → y =
{ y

x
if y < x

1 if x ≤ y
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