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Abstract

We provide a methodology to introduce proof search oriented calculi for a large class of many-valued logics, and a sufficient
condition for their Co-NP completeness. Our results apply to many well known logics including Godel, Lukasiewicz and Product
Logic, as well as Héjek’s Basic Fuzzy Logic.
© 2015 Elsevier B.V. All rights reserved.

1. Introduction

The invertibility of rules' in a proof system is an important feature for guiding proof search; in addition it turns
out to be very useful to settle the computational complexity of the formalized logic. For many-valued logics, calculi
with invertible rules (proof search oriented calculi) have been provided for all finite-valued logics. These calculi are
defined by generalizing Gentzen sequents Ay, ..., A, = B, ..., B, to many placed (or labeled) sequents, each cor-
responding to a truth value of the logic, see e.g. the survey [9] ([12], for the non-deterministic case). The construction
of these calculi, out of the truth tables of the connectives, is even computerized, see [10]. This design does not apply
to infinite-valued logics where, excepting Godel logic [8,5], proof search oriented calculi — when available — are in-
troduced on a logic by logic basis and their construction requires some ingenuity; this is for instance the case of the
calculi for Lukasiewicz and Product logic [29,28,27], defined using hypersequents, which are finite “disjunctions” of
Gentzen sequents [4,3].

An important step towards the automated construction of proof search oriented calculi for many-valued logics was
taken in [8] with the introduction of sequents of relations, that are disjunctions of semantic predicates over formulas,
and of a methodology to construct such calculi for all projective logics. Intuitively a logic is projective if for each
connective [, the value of [l(xy, ..., x,) is equal to a constant or to one of the xy, ..., x,. The methodology was
extended in [19] to handle semi-projective logics where the value of each L(x, ..., x,) can also be a term of the form
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p(x;) with p unary function symbol and i € {1, ..., n}. Projective logics are quite interesting, but perhaps not general
enough: among many-valued logics, only the finite-valued logics and Godel logic are projective. Semi-projective log-
ics constitute a slightly larger class, and they capture, for instance, Nilpotent and Weak Nilpotent Minimum logic [21],
the relevance logic RM [2] and, by considering conservative extensions, Hdjek’s Basic Fuzzy Logic BL extended with
n-contraction [14]. All semi-projective logics have a locally finite variety as their equivalent algebraic semantics while
important many-valued logics such as Lukasiewicz logic, Product Logic and BL do not, despite the fact that they have
suitable calculi with invertible rules [18,30,16] and are Co-NP complete. The calculi in [18,30,16] are defined using
relational hypersequents (r-hypersequents for short) that generalize hypersequents by considering finite disjunctions
of two different types of sequents, where Gentzen’s sequent arrow = is replaced in one by < and in the other by <.

In this paper we generalize r-hypersequents to disjunctions of arbitrary semantic predicates (not only < and <) over
multisets of formulas, rather than single formulas as in the case of sequents of relations. We introduce a methodology
to define r-hypersequent calculi for a large class of many-valued logics (hyperprojective logics) and identify sufficient
conditions on these calculi that guarantee the Co-NP completeness of the formalized logics. Our methodology applies
to projective and semi-projective logics as well as to Lukasiewicz, Product Logic and BL; it subsumes all existing
results on sequent of relations and on r-hypersequent calculi (e.g. [8,6,19,18,30,16]), and provides a unified perspective
on most of the known complexity results for many-valued logics. Moreover, our method can be applied to new logics
(or already known logics not having yet proof search oriented calculi), provided that they are hyperprojective.

In a hyperprojective logic the value of each connective LJ(x1, ..., x,) is defined by cases this time expressed by
relations on multisets of constants, of terms xi, ..., x, and of p(x;), for p unary functions and i € {1, ...,n}.

We illustrate the idea behind hyperprojective logics and the way we define r-hypersequent calculi for them with
the example of Product Logic. For this logic, as in (the projective presentation of) Godel Logic [8,6,7] it is natural to
consider the relations < and <. Product Logic is neither projective nor semi-projective, because if x, y ¢ {0, 1} then
the product x&y depends on both x and y. The idea is to represent the product by a monoidal operation @ standing
for the union of multisets, i.e. x&y =x D y.

In general, to define invertible rules for a connective LJ(x1, ..., x,) of a hyperprojective logic L we will consider
“reductions” (based on the relations in the semantic theory of L) that act on multisets of formulas, i.e., on I" @
O(xq, ..., x,), where I' is a multiset, and in which the formula C(x1, ..., x,,) is decomposed into a multiset of smaller
terms (constants, x; or p(x;)).

In the particular case of the connective x&y of Product Logic we consider the following “reduction cases”: for
F'x&y<AasTT@xdy<Aandfor' IAPx&y asT" < AP x Py, where < denotes either < or <. Our
calculus for Product Logic will then contain r-hypersequents consisting of disjunctions of sequents of the form I' < A
or I' < A, where I' and A are multisets of formulas. As in the case of hypersequents [4,3] the disjunction will be
denoted by “|” and the union of multisets by “,”. With this notation we have that ¢&, ' <1 A reduces (and it is
indeed equivalentto) to ¢, ¥, I' < Aand I' < A, ¢& reduces to I << A, ¢, 1, which naturally lead to the following
left and right rules for the connective & w.r.t. the relation <1 (below H stands for an arbitrary r-hypersequent)

Hlp, ¢y, I <A HIT <A, 9,¢
H|p&y, T < A HIT <A, &y
Now since
| xifx<y _yifx<y
X/\y_{yify<x xvy_{xify<x
we have:

¢ vy <Areducesto ¥ < @',y <Aandto y <o|l',p < A;
F'<aA,¢Vvreducesto y <o|I' <A, ¥ andtod <y | <A, ¢;
o Ay < Areducesto ¥ < @', ¢ <Aandto ¢ <y |, < A;
F'aA,¢p Ay reducesto y <@’ <A,¢pandtod <y |I' <A, Y.

Finally, recalling that in Product Logic

Lif y<x

f— X
x—)y—{l if x<y
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