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Abstract

We investigate closure operators defined on various partly ordered sets of fuzzy objects, including sets of all fuzzy sets with 
values in a complete residuated lattice and sets of all cuts systems, defined in crisp sets and sets with similarity relations, respec-
tively. We proved several extension theorems, under which a closure operator defined on one universe can be extended to a closure 
operator defined on another universe. We also investigate relationships between continuity of pairs of maps with respect to different 
closure operators.
© 2015 Elsevier B.V. All rights reserved.

1. Introduction

The notions of a closure system and a closure operator are very useful tools in several areas of classical mathemat-
ics. Let us mention classical closure operators in topological spaces, closure operators which enable to extend various 
mathematical structures to better ones (e.g., metric space to a complete metric space, lattice to a complete lattice, etc.), 
closure operators in various algebraic structures, e.g., topological groups, etc. All these closure operators have a very 
similar structure. In fact, if U is a universe for our closure operator (e.g., classical sets, set of all metric spaces, set of 
all lattices, etc.) with some ordering ≤ defined on U (e.g., a set inclusion relation ⊆), then a closure operator could be 
defined as a map c : U → U , satisfying

1. x ≤ c(x),
2. c(c(x)) = c(x),
3. x ≤ y ⇒ c(x) ≤ c(y),

for every x, y ∈ U . This led several authors to investigate the closure operators also in the framework of fuzzy set 
theory. Recall the papers [3,5,4,6,7], where various results about closure operators defined on universes of classical 
fuzzy sets are presented.
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In the fuzzy set theory and its applications, some other generalizations of classical fuzzy sets are frequently used. 
Firstly, instead of the unit interval [0, 1] some other structures are used. Most of them are some versions of complete 
lattices with some additional properties. One of the most frequently used structure is a complete residuated lattice, 
see, e.g., [13] (in some terminology unital and commutative quantale, see [14]), i.e. a structure Q = (L, ∧, ∨, ⊗, →,

0Q, 1Q). A well known example is the Łukasiewicz algebra Ł = ([0, 1], ∨, ∧, ⊗, →Ł, 0, 1), where

a ⊗ b = 0 ∨ (a + b − 1)

a →Ł b = 1 ∧ (1 − a + b).

Further, classical fuzzy sets (or fuzzy sets with values in residuated lattice) are defined in sets. But any set A can be 
considered as a couple (A, =), where = is a standard equality relation defined in A. It is then natural instead of the 
strict equality relation =, to consider some more “fuzzy” equality relation defined in A, which is called similarity 
relation. Hence, instead of a classical set A and a fuzzy set s : A → [0, 1], we can use a set with similarity relation 
(A, δ) (called a Q-set) and a “fuzzy set” s : (A, δ) → Q.

In our previous papers [11,12], we introduced a notion of a fuzzy set in sets with similarity relation (A, δ) (the 
so-called Q-sets), where values of a similarity relation δ : A × A → Q are from the residuated lattice Q. Q-sets 
then represent objects in various categories K, with differently defined morphisms. A notion of a fuzzy set in (A, δ)
then depends on a category K, i.e., f is a fuzzy set in an Q-set (A, δ) in a category K (shortly, f ⊂∼K

(A, δ)), if 
f : (A, δ) → (Q, ↔) is a morphism in K, where ↔ is the biresiduation operation in Q (= special similarity relation 
in Q). This formal extension of classical fuzzy sets enables us to develop the fuzzy set theory in any category of 
Q-sets, with a lot of properties similar to those of classical fuzzy sets. Although such definition of a fuzzy set in a 
category K is new, for some concrete examples of a category K, it represents a well known object. In the paper, we 
are interested in a special category, the category Set(Q) with morphisms (A, δ) → (B, γ ), defined as special maps 
A → B . In the category Set(Q), a fuzzy set in an Q-set (A, δ) is any extensional map s : A → Q, i.e., a map which is 
well known and frequently used by various authors.

In papers [9,10], we proved, that fuzzy sets in the category Set(Q) can be represented by some cut systems. Recall 
that a nested system of α-cuts in A is a system (Cα)α of subsets of A, such that Cα ⊆ Cβ if α ≥ β and the set 
{α ∈ [0, 1] : a ∈ Cα} has the greatest element for any a ∈ A. Then for any nested system of α-cuts C = (Cα)α , a fuzzy 
set μC : A → [0, 1] can be constructed by μC(x) = ∨

{β:x∈Cβ } β , and, conversely, for any fuzzy set μ in A, a nested 
system of α-cuts is defined by Cα = {x ∈ A : μ(x) ≥ α}. Between nested systems of α-cuts in A and fuzzy sets in A
there are some interesting relationships, and from some point of view an investigation of fuzzy sets can be substituted 
by an investigation of nested systems of α-cuts (see e.g. [1,2]).

These results can be extended in a natural way to the equivalence between classical fuzzy sets and α-cuts. Namely, 
we proved that any fuzzy set f ⊂∼Set(Q)

(A, δ) can be represented by the so-called f-cut system C = (Cα)α∈Q, where 

Cα are subsets of A with some special properties. If instead of a similarity relation δ, we will consider standard 
equality relation =, these general theorems represent relations between classical fuzzy sets and α-cuts.

A result of all these generalizations is a fact, that instead of one universe for a closure operator (i.e., a set Z(A) of 
all classical fuzzy sets on a set A) we can consider the following universes:

(1) 2A = the set of all subsets of A,
(2) Z(A) = the set of all classical fuzzy sets in A, i.e., maps A → Q,
(3) F(A, δ) = the set of all fuzzy sets in Q-set (A, δ) in the category Set(Q),
(4) D(A) = the set of all classical cuts in a set A,
(5) C(A, δ) = the set of all f-cuts in an Q-set (A, δ) in the category Set(Q).

The aim of this paper is to investigate a possibility to extend a closure operator defined on one of the above 
mentioned universe to a closure operator defined on any other universe. We also investigate continuous properties of 
maps between universes with respect to closure operators.
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