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Abstract

Extending the idea of Even and Lehrer (2014) [3], we discuss a general approach to integration based on a given decomposition 
system equipped with a weighting function, and a decomposition of the integrated function. We distinguish two type of decompo-
sitions: sub-decomposition based integrals (in economics linked with optimization problems to maximize the possible profit) and 
super-decomposition based integrals (linked with costs minimization). We provide several examples (both theoretical and realistic) 
to stress that our approach generalizes that of Even and Lehrer (2014) [3] and also covers problems of linear programming and 
combinatorial optimization. Finally, we introduce some new types of integrals related to optimization tasks.
© 2015 Elsevier B.V. All rights reserved.
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1. Introduction

The idea of decomposition of the integrated function f for the integration purposes is a basic feature of con-
structions/definitions of integrals since ever. Recall, e.g., Eudoxus of Cnidus (408–355 BC) exhaustion principle, 
Riemann and Lebesgue integrals (lower and upper integral sums), etc. Integration always merges two sources of 
information, the integrated function and weights of special functions used for decomposition purposes (e.g., mea-
sures assigning weights to sets, i.e., to characterize functions of sets), into a single representative value. In this 
contribution, we will deal with non-negative (measurable) functions and non-negative weights only, supposing al-
ways the monotonicity of the considered weights, and vanishing of such weights for null functions. Both from 
transparency of our ideas as well as for the application purposes in economics and multicriteria decision support, 
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we will always deal with a fixed finite space N = {1, . . . , n}, where n ∈ N is a fixed positive integer. Then the 
power set 2N being considered excludes any measurability constraints. Each function f : N → [0, ∞[ = R+ can 
be seen as an n-dimensional vector x ∈ Rn+, x = (x1, . . . , xn) = (f (1), . . . , f (n)). The aim of this contribution is 
a proposal of a general approach to decomposition based integration, distinguishing sub-decompositions and super-
decompositions. We will stress several integrals known from the literature as particular instances of our approach. 
Moreover, several new types of integrals related to optimization tasks will be introduced and exemplified. The pa-
per is organized as follows. In Section 2 we propose the idea of sub-decomposition based integrals and, similarly, 
super-decomposition approach to integration is discussed in Section 3. We provide several examples of application 
of decomposition integrals, both theoretical as well as realistic. In Section 4 we confront our approach with previ-
ous research in literature, especially with the idea of Even and Lehrer [3]. Particular decomposition based integrals 
are discussed in Section 5. Finally, some concluding remarks and formal proposal for future researches are added in 
Section 6.

2. Sub-decomposition based integrals

Any finite system of vectors of Rn+, (xi )ki=1 = (x1, . . . , xk) ∈ (Rn+)k with k ∈ N, is called a collection, and the set of 
all collections is Rn = ∪k∈N(Rn+)k . A decomposition system is any D ⊆ Rn such that there exists x �= 0 = (0, . . . , 0)

with x ∈ (xi )ki=1 for some collection (xi )ki=1 ∈ D.
As usual, for any two x, y ∈Rn+ with x = (x1, . . . , xn) and y = (y1, . . . , yn), we write x ≤ y whenever xi ≤ yi for 

all i = 1, . . . , n.
Given a decomposition system D, we denote

D̃ = {x ∈ Rn+ | x ∈ (xi )ki=1 for some collection (xi )ki=1 ∈D}.

Conversely, for any X ⊆Rn+, with X containing at least one non-zero vector, we define

DX = {(xi )ki=1 ∈ Rn | xi ∈ X for all i = 1, . . . , k}

as the complete decomposition system generated by X, and clearly D̃X = X and, moreover, DX is the union of all 
decomposition systems D such that D̃ = X.

Definition 1. Let D be a decomposition system. A mapping A : D̃ → R+ is called a weighting function on D whenever

– A(x) ≤ A(y) if x ≤ y, x, y ∈ D̃ (monotonicity),
– A(x) > 0 for some x ∈ D̃ and A(0) = 0 whenever 0 ∈ D̃ (boundary conditions).

Observe that if D̃ =Rn+, then any weighting function A can be seen as an aggregation function (in the sense of [5], 
with related boundary condition, i.e., sup{A(x) | x ∈Rn+} = +∞ replaced by sup{A(x) | x ∈Rn+} > 0).

The following example is inspired by Even and Lehrer [3, example in Section 2].

Example 1. Consider two different work agencies A1 and A2. Each agency provides a couple of workers with exactly 
the same skills. However, each of the four workers can work alone, or together with one or more partners. The possible 
teams are identified with

T = {0,1,2}2 \ {(0,0)} ⊆N2
0,

where (1, 0), (0, 1) represent basic teams formed by a single worker from agency A1 and A2 respectively, while, e.g., 
(2, 1) is the team formed by the two workers from A1 and one indifferently chosen from A2. Suppose we know the 
efficiency of each team, measured in some work unit, given by the weighting function E : T →R+:
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