Short communication

A note on the continuity of triangular norms

Zhiqiang Shen, Dexue Zhang *
School of Mathematics, Sichuan University, Chengdu 610064, China

Received 3 January 2014; received in revised form 20 February 2014; accepted 23 February 2014
Available online 14 March 2014

Abstract

It is shown that for an associative function on the unit interval with certain boundary conditions, separate continuity implies joint continuity. This answers a question on triangular norms raised by Alsina, Frank, and Schweizer in 2003. © 2014 Elsevier B.V. All rights reserved.

Keywords: Triangular norms; Continuity

1. Introduction

Triangular norms (t-norms, for short) were introduced by Schweizer and Sklar [9] in the study of probabilistic metric spaces as a special kind of associative functions defined on the unit interval. These functions have found applications in many areas since then. In particular, (continuous) t-norms and (continuous) triangular conorms play a prominent role in fuzzy set theory $[4,6]$.

The notion of t-norms has been extended to the general setting of bounded partially ordered sets [3]. Because of the importance of continuous t-norms in fuzzy logic, continuity of t-norms on bounded partially ordered sets, the unit square $[0,1]^{2}$ in particular, has been discussed in $[3,5]$.

This note presents an answer to a question on continuous t-norms on the unit interval raised by Aslina, Frank, and Schweizer in 2003.

2. The question

Definition 1. (See Alsina et al. [1,2].) A t -norm on $[0,1]$ is a function $T:[0,1]^{2} \longrightarrow[0,1]$ such that for all x, y, z, w in $[0,1]$,
(a) $T(x, 0)=T(0, x)=0, T(x, 1)=T(1, x)=x$,
(b) $T(x, y)=T(y, x)$,

[^0](c) $T(x, y) \leqslant T(z, w)$ whenever $x \leqslant z, y \leqslant w$,
(d) $T(T(x, y), z)=T(x, T(y, z))$.

Further, if T is continuous with respect to the standard topology on $[0,1]$, then it is called a continuous t -norm.
It is clear that $T(x, 0)=T(0, x)=0$ can be derived from (c) and the condition that $T(x, 1)=T(1, x)=x$. The following characterization of continuous t-norms due to Mostert and Shields [8] is contained in Theorem 2.4.3 in the monograph [2].

Theorem 2. Suppose that $T:[0,1]^{2} \longrightarrow[0,1]$ satisfies the following conditions:
(i) $T(x, 0)=T(0, x)=0$ for all x in $[0,1]$,
(ii) $T(1,1)=1$,
(iii) T is associative,
(iv) T is continuous.

Then T is a continuous t-norm on $[0,1]$.
Alsina, Frank and Schweizer raised the following question in [1] and repeated in [2]: Whether the continuity of T assumed in Theorem 2 can be weakened to continuity in each place?

3. The answer

Theorem 3. Suppose that $T:[0,1]^{2} \longrightarrow[0,1]$ satisfies the following conditions:
(i) $T(x, 0)=T(0, x)=0$ for all $x \in[0,1]$,
(ii) $T(1,1)=1$,
(iii) T is associative,
(iv) T is continuous in each place.

Then T is a continuous t-norm on $[0,1]$.
Proof. It is known that if $T:[0,1]^{2} \longrightarrow[0,1]$ is both non-decreasing and continuous in each place then it is a continuous function [6,7]. So, thanks to Theorem 2, it suffices to show that T is non-decreasing in each place.

Firstly, we show that $T(x, 1)=T(1, x)=x$ for all $x \in[0,1]$. Fix x in $[0,1]$. Since $T(0,1)=0, T(1,1)=1$, and T is continuous in the first place, it follows that there exists some z such that $T(z, 1)=x$. Thus

$$
T(x, 1)=T(T(z, 1), 1)=T(z, T(1,1))=T(z, 1)=x .
$$

That $T(1, x)=x$ can be verified in a similar way.
Secondly, we show that $T(x, y) \leqslant y$. The conclusion is obvious if $x=0$ or $x=1$. So, we assume that $0<x<1$. Suppose on the contrary that there exists $a \in(0,1)$ such that $T(x, a)>a$. Consider the continuous function f : $[0,1] \longrightarrow \mathbb{R}$ given by $f(u)=T(x, u)-u$. Since $f(a)=T(x, a)-a>0$ and $f(1)=x-1<0$, there exists some $z \in(a, 1)$ such that $f(z)=0$, hence $T(x, z)=z$. Since $T(z, 0)=0, T(z, 1)=z$, and T is continuous in the second place, there exists some b such that $T(z, b)=a$. Then

$$
T(x, a)=T(x, T(z, b))=T(T(x, z), b)=T(z, b)=a,
$$

a contradiction to that $T(x, a)>a$. This shows that $T(x, y) \leqslant y$.
A similar argument yields that $T(x, y) \leqslant x$, whence it follows that $T(x, y) \leqslant \min \{x, y\}$.
Thirdly, we show that T is non-decreasing in the second place. Suppose that $0 \leqslant y_{1}<y_{2} \leqslant 1$. Since $T\left(y_{2}, 0\right)=0$, $T\left(y_{2}, 1\right)=y_{2}$, and T is continuous in the second place, there exists some z such that $T\left(y_{2}, z\right)=y_{1}$. Consequently, for each $x \in[0,1]$,

https://daneshyari.com/en/article/389706

Download Persian Version:
https://daneshyari.com/article/389706

Daneshyari.com

[^0]: * This work is supported by the National Natural Science Foundation of China (11371265).
 * Corresponding author. Tel.: +86 13558678979.

 E-mail addresses: zhiqiangshen7@gmail.com (Z.Q. Shen), dxzhang @ scu.edu.cn (D.X. Zhang).

