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Abstract

It is shown that for an associative function on the unit interval with certain boundary conditions, separate continuity implies joint
continuity. This answers a question on triangular norms raised by Alsina, Frank, and Schweizer in 2003.
© 2014 Elsevier B.V. All rights reserved.
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1. Introduction

Triangular norms (t-norms, for short) were introduced by Schweizer and Sklar [9] in the study of probabilistic
metric spaces as a special kind of associative functions defined on the unit interval. These functions have found
applications in many areas since then. In particular, (continuous) t-norms and (continuous) triangular conorms play a
prominent role in fuzzy set theory [4,6].

The notion of t-norms has been extended to the general setting of bounded partially ordered sets [3]. Because of
the importance of continuous t-norms in fuzzy logic, continuity of t-norms on bounded partially ordered sets, the unit
square [0,1]2 in particular, has been discussed in [3,5].

This note presents an answer to a question on continuous t-norms on the unit interval raised by Aslina, Frank, and
Schweizer in 2003.

2. The question

Definition 1. (See Alsina et al. [1,2].) A t-norm on [0,1] is a function T : [0,1]2 −→ [0,1] such that for all x, y, z,w

in [0,1],

(a) T (x,0) = T (0, x) = 0, T (x,1) = T (1, x) = x,
(b) T (x, y) = T (y, x),

✩ This work is supported by the National Natural Science Foundation of China (11371265).
* Corresponding author. Tel.: +86 13558678979.

E-mail addresses: zhiqiangshen7@gmail.com (Z.Q. Shen), dxzhang@scu.edu.cn (D.X. Zhang).

http://dx.doi.org/10.1016/j.fss.2014.02.022
0165-0114/© 2014 Elsevier B.V. All rights reserved.

http://www.sciencedirect.com
http://dx.doi.org/10.1016/j.fss.2014.02.022
http://www.elsevier.com/locate/fss
mailto:zhiqiangshen7@gmail.com
mailto:dxzhang@scu.edu.cn
http://dx.doi.org/10.1016/j.fss.2014.02.022
http://crossmark.crossref.org/dialog/?doi=10.1016/j.fss.2014.02.022&domain=pdf


36 Z.Q. Shen, D.X. Zhang / Fuzzy Sets and Systems 252 (2014) 35–38

(c) T (x, y) � T (z,w) whenever x � z, y � w,
(d) T (T (x, y), z) = T (x,T (y, z)).

Further, if T is continuous with respect to the standard topology on [0,1], then it is called a continuous t-norm.

It is clear that T (x,0) = T (0, x) = 0 can be derived from (c) and the condition that T (x,1) = T (1, x) = x. The
following characterization of continuous t-norms due to Mostert and Shields [8] is contained in Theorem 2.4.3 in the
monograph [2].

Theorem 2. Suppose that T : [0,1]2 −→ [0,1] satisfies the following conditions:

(i) T (x,0) = T (0, x) = 0 for all x in [0,1],
(ii) T (1,1) = 1,

(iii) T is associative,
(iv) T is continuous.

Then T is a continuous t-norm on [0,1].

Alsina, Frank and Schweizer raised the following question in [1] and repeated in [2]: Whether the continuity of T

assumed in Theorem 2 can be weakened to continuity in each place?

3. The answer

Theorem 3. Suppose that T : [0,1]2 −→ [0,1] satisfies the following conditions:

(i) T (x,0) = T (0, x) = 0 for all x ∈ [0,1],
(ii) T (1,1) = 1,

(iii) T is associative,
(iv) T is continuous in each place.

Then T is a continuous t-norm on [0,1].

Proof. It is known that if T : [0,1]2 −→ [0,1] is both non-decreasing and continuous in each place then it is a
continuous function [6,7]. So, thanks to Theorem 2, it suffices to show that T is non-decreasing in each place.

Firstly, we show that T (x,1) = T (1, x) = x for all x ∈ [0,1]. Fix x in [0,1]. Since T (0,1) = 0, T (1,1) = 1, and
T is continuous in the first place, it follows that there exists some z such that T (z,1) = x. Thus

T (x,1) = T
(
T (z,1),1

) = T
(
z,T (1,1)

) = T (z,1) = x.

That T (1, x) = x can be verified in a similar way.
Secondly, we show that T (x, y) � y. The conclusion is obvious if x = 0 or x = 1. So, we assume that 0 < x < 1.

Suppose on the contrary that there exists a ∈ (0,1) such that T (x, a) > a. Consider the continuous function f :
[0,1] −→ R given by f (u) = T (x,u) − u. Since f (a) = T (x, a) − a > 0 and f (1) = x − 1 < 0, there exists some
z ∈ (a,1) such that f (z) = 0, hence T (x, z) = z. Since T (z,0) = 0, T (z,1) = z, and T is continuous in the second
place, there exists some b such that T (z, b) = a. Then

T (x, a) = T
(
x,T (z, b)

) = T
(
T (x, z), b

) = T (z, b) = a,

a contradiction to that T (x, a) > a. This shows that T (x, y) � y.
A similar argument yields that T (x, y) � x, whence it follows that T (x, y) � min{x, y}.
Thirdly, we show that T is non-decreasing in the second place. Suppose that 0 � y1 < y2 � 1. Since T (y2,0) = 0,

T (y2,1) = y2, and T is continuous in the second place, there exists some z such that T (y2, z) = y1. Consequently, for
each x ∈ [0,1],
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