

Available online at www.sciencedirect.com

ScienceDirect

Fuzzy Sets and Systems 252 (2014) 76-98

www.elsevier.com/locate/fss

Ortholinear and paralinear semi-copulas

T. Jwaid a,*, B. De Baets a, H. De Meyer b

^a KERMIT, Department of Mathematical Modelling, Statistics and Bioinformatics, Ghent University, Coupure links 653, B-9000 Ghent, Belgium b Department of Applied Mathematics, Computer Science and Statistics, Ghent University, Krijgslaan 281 S9, B-9000 Ghent, Belgium

Received 2 September 2013; received in revised form 5 February 2014; accepted 6 February 2014

Available online 15 February 2014

Abstract

A new method to construct semi-copulas is introduced. These semi-copulas are called *ortholinear* (resp. *paralinear*) semi-copulas and their construction is based on linear interpolation on segments that are perpendicular (resp. parallel) to the diagonal of the unit square. The classes of ortholinear and paralinear (quasi-)copulas are characterized as well.

© 2014 Elsevier B.V. All rights reserved.

Keywords: Semi-copula; Quasi-copula; Copula; Diagonal section; Opposite diagonal section; Linear interpolation

1. Introduction

Semi-copulas have recently gained importance in several areas of research, such as reliability theory, fuzzy set theory and multi-valued logic [2,12,19,21]. Special classes of semi-copulas, such as quasi-copulas and copulas, are widely studied. For instance, quasi-copulas appear in fuzzy set theoretical approaches to preference modelling and similarity measurement [6–8]. Due to Sklar's theorem [35], copulas have received ample attention from researchers in probability theory and statistics [23].

Recall that a semi-copula [16,18] is a function $S:[0,1]^2 \to [0,1]$ satisfying the following conditions:

(i) for any $x \in [0, 1]$, it holds that

$$S(x, 0) = S(0, x) = 0,$$
 $S(x, 1) = S(1, x) = x;$

(ii) for any $x, x', y, y' \in [0, 1]$ such that $x \le x'$ and $y \le y'$, it holds that $S(x, y) \le S(x', y')$.

In other words, a semi-copula is nothing else but a binary aggregation function with neutral element 1.

The functions $T_{\mathbf{M}}$ and $T_{\mathbf{D}}$ given by $T_{\mathbf{M}}(x, y) = \min(x, y)$ and $T_{\mathbf{D}}(x, y) = \min(x, y)$ whenever $\max(x, y) = 1$, and $T_{\mathbf{D}}(x, y) = 0$ elsewhere, are examples of semi-copulas. Moreover, for any semi-copula S the inequality $T_{\mathbf{D}} \leq S \leq T_{\mathbf{M}}$

E-mail address: tarad.jwaid@ugent.be (T. Jwaid).

^{*} Corresponding author.

holds. A semi-copula Q is a quasi-copula [20,22,28] if it is 1-Lipschitz continuous, i.e. for any $x, x', y, y' \in [0, 1]$, it holds that

$$|Q(x', y') - Q(x, y)| \le |x' - x| + |y' - y|.$$

A semi-copula C is a copula [1,30] if it is 2-increasing, i.e. for any $x, x', y, y' \in [0, 1]$ such that $x \le x'$ and $y \le y'$, it holds that

$$V_C([x,x']\times[y,y']):=C(x',y')+C(x,y)-C(x',y)-C(x,y')\geqslant 0.$$

 $V_C([x,x'] \times [y,y'])$ is called the C-volume of the rectangle $[x,x'] \times [y,y']$. The copulas $T_{\mathbf{M}}$ and $T_{\mathbf{L}}$ with $T_{\mathbf{L}}(x,y) = \max(x+y-1,0)$, are respectively the greatest and the smallest copula, i.e. for any copula C, it holds that $T_{\mathbf{L}} \leq C \leq T_{\mathbf{M}}$.

The diagonal section of a $[0, 1]^2 \to [0, 1]$ function F is the function $\delta_F : [0, 1] \to [0, 1]$ defined by $\delta_F(x) = F(x, x)$. A diagonal function [13] is a function $\delta : [0, 1] \to [0, 1]$ satisfying the following conditions:

- (D1) $\delta(0) = 0, \delta(1) = 1;$
- (D2) δ is increasing;
- (D3) for any $x \in [0, 1]$, it holds that $\delta(x) \leq x$;
- (D4) δ is 2-Lipschitz continuous, i.e. for any $x, x' \in [0, 1]$, it holds that

$$\left|\delta(x') - \delta(x)\right| \leqslant 2|x' - x|.$$

The functions $\delta_{T_{\mathbf{M}}}(x) = x$ and $\delta_{T_{\mathbf{L}}}(x) = \max(2x - 1, 0)$ are examples of diagonal functions. Moreover, for any diagonal function δ , it holds that

$$\delta_{T_{\mathbf{L}}} \leqslant \delta \leqslant \delta_{T_{\mathbf{M}}}$$
.

The set of all diagonal functions will be denoted by \mathcal{D} . The set of all $[0,1] \to [0,1]$ functions that satisfy conditions (D1), (D2) and (D3) will be denoted by \mathcal{D}_S ; the subset of *absolutely continuous* functions in \mathcal{D}_S will be denoted by \mathcal{D}_S^{ac} . We will restrict our attention to the elements of \mathcal{D}_S^{ac} when characterizing the class of ortholinear semi-copulas. Note that the k-Lipschitz continuity of a real function implies its absolute continuity [37], and hence, any diagonal function is absolutely continuous. The diagonal section of a copula C is a diagonal function. Conversely, for any diagonal function δ , there exists at least one copula C with diagonal section $\delta_C = \delta$. For instance, the copula C_δ defined by

$$C_{\delta}(x, y) = \min\left(x, y, \frac{\delta(x) + \delta(y)}{2}\right)$$

is the greatest symmetric copula with diagonal section δ [11,14,31].

Similarly, the opposite diagonal section of a $[0, 1]^2 \to [0, 1]$ function F is the function $\omega_F : [0, 1] \to [0, 1]$ defined by $\omega_F(x) = F(x, 1 - x)$. An opposite diagonal function [4] is a function $\omega : [0, 1] \to [0, 1]$ satisfying the following conditions:

- (OD1) for any $x \in [0, 1]$, it holds that $\omega(x) \leq \min(x, 1 x)$;
- (OD2) ω is 1-Lipschitz continuous, i.e. for any $x, x' \in [0, 1]$, it holds that

$$|\omega(x') - \omega(x)| \leq |x' - x|.$$

The functions $\omega_{T_{\mathbf{M}}}(x) = \min(x, 1-x)$ and $\omega_{T_{\mathbf{L}}}(x) = 0$ are examples of opposite diagonal functions. Moreover, for any opposite diagonal function ω , it holds that

$$\omega_{T_{\mathbf{L}}} \leqslant \omega \leqslant \omega_{T_{\mathbf{M}}}$$
.

The set of all opposite diagonal functions will be denoted by \mathcal{O} . The set of all $[0,1] \to [0,1]$ functions that satisfy condition (OD1) will be denoted by \mathcal{O}_S ; the subset of *absolutely continuous* functions in \mathcal{O}_S will be denoted by \mathcal{O}_S^{ac} . We will restrict our attention to the elements of \mathcal{O}_S^{ac} when characterizing the class of paralinear semi-copulas. The

Download English Version:

https://daneshyari.com/en/article/389710

Download Persian Version:

https://daneshyari.com/article/389710

Daneshyari.com