

Available online at www.sciencedirect.com

Fuzzy Sets and Systems 267 (2015) 18-30

www.elsevier.com/locate/fss

On diagonal completion of lattice-valued diagonal Cauchy spaces

Gunther Jäger*

School of Mechanical Engineering, University of Applied Sciences Stralsund, 18435 Stralsund, Germany Received 12 February 2014; received in revised form 3 May 2014; accepted 5 May 2014

Available online 22 May 2014

Abstract

We define and study diagonal axioms for lattice-valued Cauchy spaces. A completion of a weakly diagonal lattice-valued Cauchy space is constructed, which is weakly diagonal and the coarsest among such completions. It is at the same time at least as fine as any weakly regular completion.

© 2014 Elsevier B.V. All rights reserved.

Keywords: L-Topology; L-Cauchy space; Diagonal condition; Completion

1. Introduction

Lattice-valued Cauchy spaces were first defined, for frames as lattices, in [14]. They generalize classical Cauchy spaces [22,19,26] to the lattice-valued case. If the lattice is given by a complete Boolean algebra, lattice-valued uniform convergence spaces [18] and hence also lattice-valued uniform spaces [6] induce underlying lattice-valued Cauchy spaces. For a suitable choice of the lattice, probabilistic Cauchy spaces [21,24] are examples of lattice-valued Cauchy spaces.

Later, in [3], a slight generalization of lattice-valued Cauchy spaces and regularity for these spaces was studied. Other generalizations are studied in [27] and [25].

In [14] a notion of completeness was defined and, if the lattice has a prime bottom element, a completion for a non-complete lattice-valued Cauchy space was constructed, provided the space satisfies a so-called completion axiom. This completion generalizes a corresponding construction for probabilistic Cauchy spaces [21,24]. A weaker form of completeness was defined in [25] but no completion was constructed in that paper. In [27], using the concept of stratified (L, M)-filter tower space, the completion of [14] was improved by avoiding the restriction on lattices with prime bottom element.

In this paper, we continue the study of completions of lattice-valued Cauchy spaces. We introduce two diagonal axioms for these spaces and generalize a completion that preserves such a diagonal property, given by Kent and

* Tel.: +49 3831 45 6706.

http://dx.doi.org/10.1016/j.fss.2014.05.013 0165-0114/© 2014 Elsevier B.V. All rights reserved.

E-mail address: gunther.jaeger@fh-stralsund.de.

Richardson in [21], to the lattice-valued case. This shows that for a certain class of lattice-valued Cauchy spaces, completions can be constructed without any further assumptions on the underlying lattice.

2. Preliminaries

We consider in this paper frames, i.e. complete lattices, *L*, where finite meets distribute over arbitrary joins, i.e. where $\alpha \land \bigvee_{i \in I} \beta_i = \bigvee_{i \in I} (\alpha \land \beta_i)$ for all $\alpha, \beta_i \in L$ ($i \in I$) and all index sets *I*. The bottom element of *L* is denoted by \perp and the top element by \top . The lattice operation are extended pointwise from *L* to L^X , the set of all *L*-sets a, b, c, ... on *X*. In particular, we define, for $A \subseteq X$, $\alpha_A \in L^X$ by $\alpha_A(x) = \alpha$ if $x \in A$ and $\alpha_A(x) = \perp$ for $x \notin A$.

A stratified L-filter on X [7,9] is a mapping $\mathcal{F} : L^X \longrightarrow L$ with the properties (F1) $\mathcal{F}(\top_X) = \top$, $\mathcal{F}(\bot_X) = \bot$, (F2) $\mathcal{F}(a) \leq \mathcal{F}(b)$ whenever $a \leq b$, (F3) $\mathcal{F}(a) \land \mathcal{F}(b) \leq \mathcal{F}(a \land b)$ for all $a, b \in L^X$ and (Fs) $\alpha \leq \mathcal{F}(\alpha_X)$ for all $\alpha \in L$. The set of all stratified L-filters on X is denoted by $\mathcal{F}_L^s(X)$. An example of a stratified L-filter is the *point* L-filter [x] defined by [x](a) = a(x) for all $a \in L^X$. The set $\mathcal{F}_L^s(X)$ is ordered pointwise, i.e. for $\mathcal{F}, \mathcal{G} \in \mathcal{F}_L^s(X)$ we denote $\mathcal{F} \leq \mathcal{G}$ if for all L-sets $a \in L^X$ we have $\mathcal{F}(a) \leq \mathcal{G}(a)$. The set $\mathcal{F}_L^s(X)$ then has maximal elements which are called stratified L-filters and for each $\mathcal{F} \in \mathcal{F}_L^s(X)$ there is a finer stratified L-ultrafilter, see [7]. For a family of stratified L-filters $(\mathcal{F}_j)_{j\in J}$, the meet is then given by $\bigwedge_{j\in J} \mathcal{F}_j(a) = \bigwedge_{j\in J} (\mathcal{F}_j(a))$ for $a \in L^X$. In particular, we define for $\emptyset \neq A \subseteq X$, $[A] = \bigwedge_{x \in A}[x]$. Two stratified L-filters $\mathcal{F}, \mathcal{G} \in \mathcal{F}_L^s(X)$ have an upper bound if and only if $\mathcal{F}(a) \land \mathcal{G}(b) = \bot$ whenever $a \land b = \bot_X$, see [9]. For a mapping $\varphi : X \longrightarrow Y$ and $\mathcal{F} \in \mathcal{F}_L^s(X)$ we define $\varphi(\mathcal{F}) \in \mathcal{F}_L^s(Y)$ by $\varphi(\mathcal{F})(b) = \mathcal{F}(\varphi^{\leftarrow}(b))$, where for $b \in L^Y$ it is defined $\varphi^{\leftarrow}(b)(x) = b(\varphi(x))$. Then $\varphi([x]) = [\varphi(x)]$ for every $x \in X$, $\varphi(\mathcal{F} \land \mathcal{G}) = \varphi(\mathcal{F}) \land \varphi(\mathcal{G})$ and, consequently, if $\mathcal{F} \leq \mathcal{G}$ then also $\varphi(\mathcal{F}) \leq \varphi(\mathcal{G})$. Moreover, for a further mapping $\psi : Y \longrightarrow Z$ we have $\psi \circ \varphi(\mathcal{F}) = \psi(\varphi(\mathcal{F}))$. For $\mathcal{G} \in \mathcal{F}_L^s(Y)$ we define $\varphi^{\leftarrow}(b) = \bot_X$ (see [10]). If $Y \subseteq X$ and $\iota : Y \hookrightarrow X$, $y \longmapsto y$ is the inclusion mapping, then we denote for $\mathcal{F} \in \mathcal{F}_L^s(X)$ its trace on $Y, \mathcal{F}_Y = \iota^{\leftarrow}(\mathcal{F})$, in case this is a stratified L-filter on Y. Also, for $\mathcal{G} \in \mathcal{F}_L^s(Y)$ we denote $[\mathcal{G}] = \iota(\mathcal{G}) \in \mathcal{F}_L^s(X)$.

For a set J and $\mathcal{G} \in \mathcal{F}_L^s(J)$ and $\mathcal{F}^j \in \mathcal{F}_L^s(X)$ for all $j \in J$ we define the *stratified L-diagonal filter*, $\mathcal{G}(\mathcal{F}^{(\cdot)}) \in \mathcal{F}_L^s(X)$, by $\mathcal{G}(\mathcal{F}^{(\cdot)})(a) = \mathcal{G}(\mathcal{F}^{(\cdot)}(a))$ with $\mathcal{F}^{(\cdot)}(a)(j) = \mathcal{F}^j(a)$, see [12].

For notions of category theory we refer to [1].

3. Stratified L-Cauchy spaces and stratified L-limit spaces

A stratified *L*-Cauchy space [14] is a pair (X, C) of a set X and a mapping $C : \mathcal{F}_L^s(X) \longrightarrow L$ which satisfies the following axioms.

(LC1) $\forall x \in X, C([x]) = \top$. (LC2) $\mathcal{F} \leq \mathcal{G} \Longrightarrow C(\mathcal{F}) \leq C(\mathcal{G})$. (LC3) If $\mathcal{F} \lor \mathcal{G} \in \mathcal{F}_L^s(X)$, then $C(\mathcal{F}) \land C(\mathcal{G}) \leq C(\mathcal{F} \land \mathcal{G})$.

A mapping $\varphi : (X, C) \longrightarrow (X', C')$ between two stratified *L*-Cauchy spaces (X, C), (X', C') is called *Cauchy-continuous* if for all $\mathcal{F} \in \mathcal{F}_L^s(X)$ we have $C(\mathcal{F}) \leq C'(\varphi(\mathcal{F}))$. The category which has as objects the stratified *L*-Cauchy spaces and as morphisms the Cauchy-continuous mappings is denoted by *SL*-CHY. The category *SL*-CHY is topological and cartesian closed [14]. In case $L = \{0, 1\}$ we can identify *SL*-CHY with the category *CHY* of Cauchy spaces [19,26].

A stratified L-limit space [11] is a set X together with a limit map $\lim : \mathcal{F}_L^s(X) \longrightarrow L^X$ which satisfies the axioms

(LL1) $\limx = \top$ for all $x \in X$,

- (LL2) $\lim \mathcal{F} \leq \lim \mathcal{G}$ whenever $\mathcal{F} \leq \mathcal{G}, \mathcal{F}, \mathcal{G} \in \mathcal{F}_L^s(X)$,
- (LL3) $\lim \mathcal{F} \wedge \lim \mathcal{G} \leq \lim (\mathcal{F} \wedge \mathcal{G})$ for all $\mathcal{F}, \mathcal{G} \in \mathcal{F}_L^s(X)$.

A mapping $\varphi : (X, \lim) \longrightarrow (X', \lim')$ between two stratified *L*-limit spaces is called *continuous* if for all $\mathcal{F} \in \mathcal{F}_L^s(X)$ and all $x \in X$ we have $\lim \mathcal{F}(x) \leq \lim' \varphi(\mathcal{F})(\varphi(x))$. The category with objects all stratified *L*-limit spaces and the continuous mappings as morphisms is denoted by *SL-LIM*. Also this category is topological and cartesian closed [11]. A stratified *L*-limit space is called a *T1-space* if $\lim [x](y) = \top$ implies x = y and it is called a *T2-space* if $\lim \mathcal{F}(x) =$ Download English Version:

https://daneshyari.com/en/article/389767

Download Persian Version:

https://daneshyari.com/article/389767

Daneshyari.com