Available online at www.sciencedirect.com

&

systems

ScienceDirect

sets and

Fuzzy Sets and Systems 158 (2007) 18611872

www.elsevier.com/locate/fss

Theoretical and semantic distinctions of fuzzy, possibilistic, and
mixed fuzzy/possibilistic optimization
Weldon A. Lodwick?®*, K. David Jamison®

A Department of Mathematics, University of Colorado at Denver, Campus Box 170, P.O. Box 173364, Denver, CO 80217-3364, USA
dWarson & Wyatt Company, 950 17th Street, Suite 1400, Denver, CO 80202, USA

Available online 21 April 2007

Abstract

Theoretical, semantic, and algorithmic distinctions among fuzzy, possibilistic and mixed fuzzy/possibilistic optimization are
presented and illustrated. The theory underlying fuzzy, possibilistic, and mixed fuzzy/possibilistic optimization is developed and
demonstrated and points to the appropriate use of distinct solution methods associated with each type of optimization dependant on
the semantics of the problem. Semantics is key to both the input where one is obtaining the data and constructing the optimization
model in the presence of uncertainty and the output where the meaning of the results is necessary for understanding solutions.
The case in which the optimization model arises from the data that is a combination of fuzzy and possibilistic distributions is also
derived. Lastly, examples illustrate the theory. This paper is a modification and an amplification of a presentation made at IFSA’05
[W.A. Lodwich, K.D. Jamison, Theory and semantics for fuzzy and possibilistic optimization, in: Fuzzy Logic, Soft Computing and
Computational Intelligence, Eleventh Internat. Fuzzy Systems Association World Congress, July 28-31, 2005, Beijing, China, Vol.
III, pp. 1805-1810 [26]].
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1. Introduction

Uncertainty optimization problems are among the hardest to solve because the meanings of inequalities and optima
must be defined in the context of the problem in question. Moreover, the complexity of uncertain optimization is
generally great. While the present paper focuses on theory and semantics of fuzzy and possibilistic optimization, it
should be noted that many of the ideas contained herein have been applied to real large-scale problems (see [24]). This
research makes the case for separating fuzzy and possibilistic optimization both in terms of semantics as well as in
computational methods and develops approaches of how to deal with the case in which both fuzzy and possibilistic
uncertainties appear in the same model. We assume that the reader is familiar with fuzzy set theory, possibilistic theory,
and mathematical programming.

This paper is organized as follows. This first introductory section contains the discussion of the general prob-
lem of optimization under uncertainty. The second section contains the discussion of fuzzy, possibilistic, and mixed
fuzzy/possibility semantics in the context of optimization models. The third section discusses solution methods for
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fuzzy, possibilistic, and mixed fuzzy/possibilistic optimization along with solution semantics. Conclusions are found
in the last section.

1.1. Optimization in the presence of uncertainty

Optimization under uncertainty, as used here, means optimization when at least one element of the input data is
a real-valued interval, a real-valued random variable, a real-valued fuzzy number, or a real-valued number described
by a possibility/necessity distribution. This paper focuses on fuzzy and possibilistic uncertainty and its associated
optimization models. The use of necessity distributions are done similarly to possibility except that the necessity
sematic is a pessimistic one while the possibility semantic is optimistic. The methods developed map the uncertainty
onto the set of real numbers rather than dealing with partial ordering of distributions. Obtaining an order on distributions
is the domain of stochastic dominance theory (see [13,23,30,34]). While relevant, it is beyond the scope of this study.

1.2. Sources of uncertainty

We consider the following general programming problem:

z=min f(x,a) @))
st.  gi(x,h)<K0, i=1,..., M,
hjx,c)=0, j=1,..., M>,
x €S.

The constraint set is denoted Q = {x|g;(x,b)<0i =1,..., My, hj(x,c) =0j =1,..., Mz, x € S}. It is assumed
that  # {@}. The values of a, b, and c are inputs (data, coefficients, and parameters) of the programming problem.
These values are subject to uncertainty for a variety of reasons. Depending on the nature of the uncertainty, they
may be probability distributions, intervals, fuzzy sets, or possibilistic distributions. Moreover, the operator min and
relationships =, < and € can take on a flexible or fuzzy meaning becoming a soft relationship or constraint. For
example, the equality and inequality relationships may be aspirations, that is, they may take on the meaning, “Come
as close as possible to satisfying the relationships with some degree of violation being permissible.” On the other
hand, the values of a, b, or ¢ may be described by a probability, interval, fuzzy, or possibilistic distribution. In either
case (uncertainty in the relationship, uncertainty in the parameters) the meaning of the relationships must be specified.
It is noted that when the objective function and/or constraints are uncertain, the optimization problem may not be
(undoubted is not) convex so that the usual solution methods are local. In very simple cases where the constraint is of
the form Ax — b <0, and the coefficients of the matrix are intervals, the solution set can be a star-shaped region (see
[12]). Recall that an interval is a fuzzy number. Moreover, uncertainty in the matrix A means that the underlying model
as specified by linear relationships is not known exactly or that the model is precise but knowledge of what the value
of the data are, is incomplete.

2. Fuzzy and possibilistic optimization models: semantics

There is often confusion about fuzzy and possibilistic optimization. Fuzzy and possibilistic entities have different
meanings, semantics. Fuzzy and possibility uncertainty model different entities and the associated solution methods
are different as we shall see. Fuzzy entities, as is well known, are sets with non-sharp boundaries in which there is a
transition between elements that belong and elements that do not belong to the set. Possibilistic entities are real-valued
entities that exist, but the evidence associated with whether or not a particular element belongs to the set is incomplete
or hard to obtain. We use a tilde, ~, to denote a fuzzy set and a “hat”, A, to denote a possibility distribution.

2.1. Fuzzy and possibilistic optimization semantics

Next what is meant by decision-making in the presence of fuzzy and possibilistic entities is defined. These definitions
are central to the semantics and methods. In their book Dubois and Prade [5, Chapter 5] give clear definitions and
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