ELSEVIER

Applied Catalysis A: General

journal homepage: www.elsevier.com/locate/apcata

Enhanced metathesis activity of low loading Re₂O₇/Al₂O₃ catalysts for propylene production by using aluminum nitrate as Al₂O₃ precursor

Siriporn Vorakitkanvasin^a, Sirachaya Kunjara Na Ayudhya^b, Kongkiat Suriye^b, Piyasan Praserthdam^a, Joongjai Panpranot^{a,*}

^a Center of Excellence on Catalysis and Catalytic Reaction Engineering, Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand

^b SCG Chemicals Co., Ltd., 1Siam-cement Rd, Bang sue, Bangkok 10800, Thailand

ARTICLE INFO

Article history: Received 30 September 2015 Received in revised form 26 November 2015 Accepted 11 January 2016 Available online 13 January 2016

Keywords: Metathesis Propylene production Rhenium Aluminium nitrate 2-Pentene Lewis acidity

ABSTRACT

A series of alumina supported Re₂O₇ catalysts (4 wt% Re loading) were prepared by using aluminium nitrate (ANN) calcined at different temperatures (400, 550, and 750 °C) as the supports and impregnated with ammonium perrhenate solution. Despite their lower pore volume and smaller average pore size, the catalyst performances in the metathesis of ethylene and 2-pentene in terms of 2-pentene conversion and propylene selectivity of all the Re₂O₇/ANN were much improved as compared to the commercial γ -Al₂O₃ supported one (Re₂O₇/Al-com) with the Re₂O₇/ANN-550 exhibited the best performances. Based on the *in situ* Infrared spectroscopy, the *in situ* Raman spectroscopy, and the *in-situ* IR spectroscopy of chemisorbed ammonia and thermodesorption results, the use of ANN as Al₂O₃ precursors provided higher acidic OH group and higher Lewis acid sites, which were necessary for the formation of the 2nd rhenium oxide active species especially for low Re loading. The higher Bronsted acidity on the Re₂O₇/Al-com, on the other hand, produced higher amount of coke and C₅₊ products. In addition, the acid strength of the Lewis acid sites appeared to be another important factor determining metathesis activity of the supported Re₂O₇ catalysts.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Propylene is one of the most important basic chemicals in petrochemical industry, which is used in the production of polypropylene, acrylonitrile, acrylic acid, acrolein, propylene oxide, glycols, plasticizer oxo alcohols, cumene, isopropyl alcohol, and acetone. The growth in propylene production is primarily driven by the industry demand for polypropylene and is expected to be about 5.7% per year in the near future [1].

The majority of propylene is produced as a byproduct of petroleum refineries and olefin plant steam crackers. Due to the possibility of a supply/demand imbalance, the catalytic, on-purpose technology for propylene production such as metathesis and propane dehydrogenation has gained more interest recently. Supported rhenium oxide-based catalyst is known to be active for olefin metathesis at low temperatures (*i.e.*, 25 °C), whereas, molybdenum oxide- or tungsten oxide-based catalysts require much higher reaction temperatures (100–500 °C) [2–4]. The catalytic performance of

http://dx.doi.org/10.1016/j.apcata.2016.01.008 0926-860X/© 2016 Elsevier B.V. All rights reserved.

 $\text{Re}_2\text{O}_7/\gamma$ -Al₂O₃ with low rhenium loading can be further improved by addition of the third metal oxides such as MoO₃, V₂O₅, or WO₃. The MoO₃-, V₂O₅-, or WO₃-modified low rhenium loading catalysts were reported to be active and highly selective for the metathesis of methyl oleate. Moreover, their price is lower than the $\text{Re}_2\text{O}_7/\text{Al}_2\text{O}_3$ -SnR₄ catalyst for the same reaction [5]. The use of mixed supports such as silica-alumina and alumina-borate also improved the performances of Re-based catalysts in the metathesis reaction because of their high acidity and appropriate amount of Bronsted acidity compared to alumina-supported ones [6]. The alumina-borate-supported rhenium oxide catalysts were tested in both the metathesis of functionalized alkenes [7] and the metathesis of propylene [8]. The $Re_2O_7/Al_2O_3 - B_2O_3$ catalysts showed high activity and selectivity than the conventional Re2O7/A12O3 catalyst and was attributed to the increase in support acidity and their strong Bronsted acidity. Andreini et al. [9]. treated the catalyst based on silica-alumina with hexamethyldisilazane in order to remove surface OH groups and concluded that the acid-base function of these catalysts (mainly their Bronsted acidity) is involved in the reaction. In our recent studies, a relatively high propylene yield (88%) was obtained under mild reaction conditions using the unconventional feed of ethylene and 2-pentene over SiO₂-Al₂O₃

^{*} Corresponding author. Fax: +66 2218 6877. *E-mail address:* joongjai.p@chula.ac.th (J. Panpranot).

supported Re₂O₇-based catalysts [4,10–12]. The catalyst performances were found to be influenced by the properties of the SiO₂-Al₂O₃ supports, which were modified by the SiO₂-Al₂O₃ compositions [11] and/or the preparation methods [12]. The treating of Al₂O₃ with phosphate also resulted in more acidic surface, belonging to acidic phosphorus-bonded OH groups [13]. At low Re loadings, these supports have also reacted with the ReO₄⁻ ions resulting in active metathesis sites.

In the present work, the catalytic properties of $\text{Re}_2\text{O}_7/\gamma$ -Al₂O₃ in the metathesis of ethylene and 2-pentene were enhanced by using aluminium nitrate supports calcined at different calcination temperatures. The catalyst performances were correlated with the formation of well-dispersed active rhenium species. The catalyst properties were further characterized by N₂ physisorption, Xray diffraction (XRD), inductively-coupled plasma optical emission spectroscopy (ICP-OES), transmission electron microscopy (TEM), *in situ* Infrared spectroscopy (*in situ* IR), and *in situ* Raman spectroscopy (*in situ* Raman), and *in situ* IR spectroscopy of chemisorbed ammonia and thermodesorption (*in situ* NH₃-IR)

2. Experimental

2.1. Catalyst preparation

The catalyst supports were prepared by calcination of Al(NO₃)₃·9H₂O under air at 400, 550, and 750 °C for 4 h and were denoted as ANN-400, ANN-550, and ANN-750, respectively. The supports were impregnated with an aqueous solution of ammonium perrhenate (NH₄ReO₄, Aldrich) several times to obtain the 4 wt% of rhenium loading. Between impregnation steps the catalyst was held for 2 h at room temperature and then dried at 110 °C for 12 h. After the impregnation step, the catalyst was calcined in dry air at 550 °C for 8 h. For comparison purposes, a commercial γ -Al₂O₃ (Fluka) was also used for preparation of 4 wt% Re₂O₇/ γ -Al₂O₃ catalyst. The catalyst was denoted as Re₂O₇/Al-com.

2.2. Catalyst characterization

The specific surface area, the pore volume, and the pore size of the supports and the catalysts were measured by N2 physisorption at -196°C using a Micromeritics ASAP 2020 automated system. The specific surface area was calculated according to Brunauer-Emmett-Teller (BET) method and the pore volume and pore size were determined from Barret-Joyner-Halenda (BJH) method. The XRD patterns were collected using a SIEMENS D5000 X-ray diffractometer with Cu K α radiation and Ni filter. The scans were recorded in the 2θ range of $20-80^{\circ}$ using a step size of 0.04° . The actual metal loading for each catalyst were measured by by ICP-OES on a Perkin Elmer Optima 2100DV instrument. The sample was performed by digestion with a mixture of hydrofluoric and nitric acids at 60 °C. The in situ IR spectra were acquired with a Thermo Nicolet 8700 FT-IR spectrometer equipped with a Harrick Praying Mantis attachment for diffuse reflectance spectroscopy. The sample was placed in a Harrick cell, which were cooled by flowing water. Then the sample was heated from room temperature to 500 °C at a heating rate 10°C/min and holding the temperature for 1 h. After that the sample was cooled to 60 °C. The spectra were collected using a DTGS detector with a resolution of 4 cm-1 and an accumulation of 72 scans. The collection of the initial IR gas phase background was performed by placing a reflective mirror in the laser path. For in-situ IR spectroscopy of chemisorbed ammonia and thermodesorption, after pretreatment procedure the sample was saturated with 15% NH₃/He. After saturation, the physisorbed ammonia was desorbed in a helium gas flow about 1 h. Then the sample was heated from 60 °C temperature to 500 °C at a heating rate 10°C/min. The spectra were collected every minute. For in-situ Raman spectroscopy, the Raman spectra of catalysts were collected by a high resolution Raman spectrometer system (Horiba-Jobin Yvon Labram-IR) equipped with the visible laser at 532 nm. The LabSpec 5 software was used to operate the experiment and collect the Raman spectra. The laser calibration was performed with a silica slide at 520.7 cm⁻¹. The sample was loaded into the same cell used for IR measurements. The same pretreatment procedure as in the IR experiments was followed. The dehydrated Raman spectra of catalysts were collected at 60 °C. The TEM micrographs were obtained using a JEOL JEM-2100 transmission electron microscope with an accelerating voltage of 120 kV. The amount of coke was examined by the temperature programmed oxidation (TPO). The spent catalyst was in a guartz tube under the 1% O₂/He flow and heated with the heat rate of 5 °C/min until the temperature reached 900 °C, analyzed by GC-8AIT.

2.3. Reaction test

The catalyst performances were tested in the gas-phase metathesis reaction between ethylene and 2-pentene with the molar ratio of ethylene: 2-pentene 3:1, weight hourly space velocity (WHSV) $5.33 h^{-1}$, and 1g catalyst in a fixed-bed reactor (ID tube = 7.5 mm) under atmospheric pressure. In a typical run, the catalyst was pretreated at 500 °C for 1 h and then cooled down to reaction temperature at 60 °C under nitrogen flow. During the reaction, the products were analyzed by an on-line Agilent 7820A gas chromatograph equipped with a GS-Gaspro 113–4362 capillary column, 0.32 mm diameter and 60 m in length. The GC signals were processed by an EZChrom Elite integrated peak program integrator.

The conversion of the limiting reactant (2-pentene), the selectivity of products, and the yield of products were calculated by the following equations:

2-Penteneconversion (%) =

Amountof 2-pentene in feed – amountof 2-pentene remained in product Amountof 2-pentene in feed × 100

Selectivity of component i(%)

$$=\frac{\text{Amountof component i in products}}{\text{Amountof total products}} \times 100$$

Yieldof component i (%)=2-Pentene

 $\frac{Amount of \ component \ i \ in \ products}{Amount of \ total \ products} \times 100$

3. Results and discussion

3.1. Catalyst characterization

The physical properties of the various Al₂O₃ supported Re₂O₇ catalysts are shown in Table 1. The surface area of the Re₂O₇/Alcom was 136 m²/g whereas those of the Re₂O₇/ANN catalysts were ranging between 130–170 m²/g. The pore volume and the average pore size of the Re₂O₇/Al-com were slightly higher than those of the Re₂O₇/ANN catalysts. The actual Re contents were ranged between 3.70–3.94 wt% which were closed to the expected values (4 wt%). Fig. 1 shows the XRD patterns of all the prepared catalysts. The major XRD peaks at 37°, 39°, 46°, 61° and 67° were attributed to the γ -phase alumina [14]. The characteristic peaks corresponding to Re₂O₇ crystals were absent on all the catalysts because of the low amount of rhenium loading and the Re₂O₇ crystals could be volatile at the calcination temperature above 300°C [3,15,16]. Download English Version:

https://daneshyari.com/en/article/39089

Download Persian Version:

https://daneshyari.com/article/39089

Daneshyari.com