SEVIER

Contents lists available at ScienceDirect

Applied Catalysis A: General

Dehydration of 5-amino-1-pentanol over rare earth oxides

Kaishu Ohta, Yasuhiro Yamada, Satoshi Sato*

Graduate School of Engineering, Chiba University, 1-33 Yayoi, Inage, Chiba 263-8522, Japan

ARTICLE INFO

Article history: Received 16 December 2015 Received in revised form 2 February 2016 Accepted 1 March 2016 Available online 3 March 2016

Keywords: Catalytic dehydration Amino alcohol Unsaturated amine Rare earth metal oxides

ABSTRACT

Vapor-phase catalytic dehydration of 5-amino-1-pentanol was investigated over various oxide catalysts including rare earth oxides (REOs). Over ordinary acidic oxides such as Al₂O₃, SiO₂, SiO₂-Al₂O₃, TiO₂, and ZrO₂, a cyclic amine such as piperidine was mainly produced at temperatures of 300 °C and higher. In contrast, basic REOs with a cubic bixbyite structure showed the catalytic activity in the conversion of 5-amino-1-pentanol to produce 4-penten-1-amine at 425 °C. In REO catalysts, Tm₂O₃, Yb₂O₃, and Lu₂O₃ showed the high conversion of 5-amino-1-pentanol and the high selectivity to 4-penten-1-amine. Especially, Yb₂O₃ calcined at 800 °C showed a high formation rate of 4-penten-1-amine with the selectivity of ca. 90% at 425 °C. In comparing the reactivity of several amino alcohols to form the corresponding unsaturated amines, Yb₂O₃ effectively catalyzed the dehydration of 6-amino-1-hexanol into 5-hexen-1amine, whereas 3-amino-1-propanol and 4-amino-1-butanol were not effectively dehydrated due to the decomposition of the reactant.

© 2016 Elsevier B.V. All rights reserved.

CrossMark

1. Introduction

Unsaturated amines, which have both a carbon double bond and an amino group in the molecule, can be used for various applications such as polymer, ion-exchange membrane, raw material of chemical, pharmaceutical and agricultural chemical intermediates. As a pioneering report, Zimmermann et al. have reported that unsaturated amines can be produced by hydroaminomethylation of olefins using three gases such as H₂, CO, and NH₃ [1]. In the method, however, the resulting primary amines are further converted into the secondary amine. Nicolai et al. have showed that 4-penten-1-amine is produced by reduction of 4-pentenamido [2], while 4-penten-1-amine is produced with a low yield, which is approximately 40%.

We have previously reported a novel catalytic synthesis process of unsaturated alcohols via the dehydration of alkanediols such as 1,5-pentanediol [3-5], 1,4-butanediol [5-8], and 1,3butanediol [5,9-11] over rare earth oxides (REOs) calcined at 800 °C. In the dehydration of 1,5-pentanediol, heavy REOs such as Lu₂O₃, Yb₂O₃, and Tm₂O₃ are highly active and selective for the formation of 4-penten-1-ol, and the highest selectivity of 4penten-1-ol was 80.3% over Tm₂O₃ calcined at 800 °C [4,5]. It is also known that REOs [12,13] as well as ZrO₂ [14-16] and CeO₂-

http://dx.doi.org/10.1016/j.apcata.2016.03.001 0926-860X/© 2016 Elsevier B.V. All rights reserved. ZrO₂ [17] have unique character to catalyze the dehydration of 2-alcohol to produce α -olefin via Hoffman elimination. We have also reported the dehydration of 1,4-butanediol as well as 1,5pentanediol over composite oxides of cubic $Sc_{2-x}Yb_xO_3$ (x = 0.5, 1.0, and 1.5) [18]: the highest selectivity to 3-buten-1-ol surpassed 80% in the dehydration of 1,4-butanediol over the $Sc_{2-x}Yb_xO_3$ (x = 0.5, 1.0, and 1.5) catalysts calcined at 800 °C. Thus, we expected that REOs could work effectively in the dehydration of amino alcohols.

In this work, we investigated the dehydration of 5-amino-1pentanol into 4-penten-1-amine over REOs and $Sc_{2-x}Yb_xO_3$ (x = 0.5, 1.0, and 1.5) at 425 °C to search a suitable catalyst and the efficient reaction conditions. We have found that 4-penten-1-amine is efficiently produced over Tm₂O₃, Yb₂O₃, and Lu₂O₃ in the dehydration of 5-amino-1-pentanol (Scheme 1). We also investigated the catalytic features of Yb₂O₃ in the dehydration of 5-amino-1-pentanol. Furthermore, we performed other amino alcohols with different carbon chain length, such as 3-amino-1-propanol, 4-amino-1butanol, and 6-amino-1-hexanol, to produce the corresponding unsaturated amines over Yb₂O₃.

2. Experimental

2.1. Catalyst samples

Metal nitrate hydrates, such as Ce(NO₃)₃, Nd(NO₃)₃, Sm(NO₃)₃, $Eu(NO_3)_3$, $Gd(NO_3)_3$, $Tb(NO_3)_3$, $Ho(NO_3)_3$, $Y(NO_3)_3$, $Er(NO_3)_3$,

Corresponding author. E-mail address: satoshi@faculty.chiba-u.jp (S. Sato).

Scheme 1. Dehydration of 5-amino-1-pentanol to 4-penten-1-amine.

Tm(NO₃)₃, Yb(NO₃)₃, Lu(NO₃)₃, and Sc(NO₃)₃, were purchased from Sigma-Aldrich Co., Ltd., Japan. La₂O₃, Pr_6O_{11} , Mg(NO₃)₂, Ca(NO₃)₂, and Dy(NO₃)₃ hexahydrate were purchased from Wako Pure Chemicals Co., Japan. 5-Amino-1-pentanol, 3-amino-1-propanol, and 4-amino-1-butanol were purchased from Wako Pure Chemicals Co., Japan. 6-Amino-1-hexanol aqueous solution (70 wt%) was purchased from Sigma-Aldrich Co., Ltd., Japan.

Except La₂O₃ and Pr₆O₁₁, other REOs such as CeO₂, Nd₂O₃, Sm₂O₃, Eu₂O₃, Gd₂O₃, Tb₂O₃, Dy₂O₃, Ho₂O₃, Y₂O₃, Er₂O₃, Tm₂O₃, Yb₂O₃, Lu₂O₃, and Sc₂O₃ were prepared by the calcination of the corresponding nitrate. MgO and CaO were also prepared by the calcination of the corresponding nitrate. Monoclinic Yb₂O₃ was supplied by Kanto Kagaku Co., Ltd., Japan. Three Sc_{2-x}Yb_xO₃(x = 0.5, 1.0, and 1.5) catalysts were supplied by Daiichi Kigenso Kagaku Kogyo Co., Ltd., Japan [18]. Rutile TiO₂ (JRC-TIO-3) and anatase TiO₂ (JRC-TIO-4) were supplied by Catalyst Reference of Japan. Amorphous SiO₂ (CARiACT Q10) was supplied by Fuji Silycia Chemical Ltd. Monoclinic ZrO₂ (RSC HP) and tetragonal ZrO₂ were supplied by Daiichi Kigenso Kagaku Kogyo Co., Ltd., Japan and Saint-Gobain, respectively. Al₂O₃ (N611N) and SiO₂-Al₂O₃ (N631L) were purchased from Nikki Chemical Co., Ltd., Japan.

2.2. Catalytic reaction

The dehydration of amino alcohols, such as 5-amino-1pentanol, 3-amino-1-propanol, 4-amino-1-butanol, and 6-amino-1-hexanol, were carried out in a fixed-bed down flow reactor with an inside diameter of 20 mm under the atmospheric pressure of either N_2 or H_2 gas. In each test, 0.5 g of catalyst was loaded

Fig. 1. XRD profiles of REO and $Sc_{2-x}Yb_xO_3$ samples calcined at 800 °C.

into the reactor. Amino alcohols were dehydrated at temperatures between 300 and 450 °C. Prior to the reaction, the catalyst was preheated in the flow reactor in a carrier gas at the same temperature as the reaction temperature for 1 h. After the pretreatment, an amino alcohol was fed through the top of the reactor at a liquid feed rate of $1.71 \text{ cm}^3 \text{ h}^{-1}$, which corresponds to 16 mmol h^{-1} for 5-amino-1-pentanol and $W/F=31 \text{ g}_{cat}$. h mol⁻¹ where *W* is catalyst weight and *F* is a reactant feed rate, together with a carrier gas flow of 20 cm³ min⁻¹. An effluent mixture collected every hour was analyzed by gas chromatography (GC-8A, Shimadzu, Japan) with a capillary column of TC-5 (30m, GL Science Inc., Japan) over a temperature range controlled from 70 to 280 °C at a heating rate of 10 °C min⁻¹. The major products in the dehydration were 4-penten-1-amine, piperidine, tetrahydropyridine, δ -valerolactam, and *n*-pentyl amine.

Since the catalytic activity is stable in the similar manner to the previous works reported in the dehydration of diols [3–11], the conversion of 5-amino-1-pentanol and the selectivity to each product were averaged in the 1–5 h to evaluate the catalytic activity. The formation rate of the corresponding unsaturated amines per unit surface area [mmol $h^{-1} m^{-2}$] was calculated by using the feed rate of the reactant multiplied by the conversion and the selectivity divided by the catalyst weight and specific surface area.

2.3. Characterization

The specific surface area (SA) of each catalyst was calculated by the BET method using the N₂ isotherm at -196 °C. X-ray diffraction (XRD) patterns were recorded on an XRD7000 (Shimadzu, Japan) using Cu Ka radiation (λ = 0.15 nm) to detect the crystal structure of the samples. The tube voltage and current were 40 kV and 40 mA, respectively.

Temperature-programmed desorption (TPD) of adsorbed CO₂ was measured to estimate the basicity of the catalysts. The numbers of basic sites were estimated from neutralization-titration curves of diluted NaOH solution [19,20]. Prior to the CO₂ adsorption, a sample (ca. 50 mg) was preheated in a quartz tube at 500 °C for 1 h under a reduced pressure. In CO₂-TPD, CO₂ was adsorbed on the sample at room temperature for 72 h and evacuated for 1 h. After no CO₂ had been observed in N₂ flow at room temperature, the sample was heated from room temperature to 800 °C at a heating rate of 10 °C min⁻¹ in an N₂ flow of 34 cm³ min⁻¹. The desorbed CO₂ molecules, together with N₂ gas, were bubbled into an electric conductivity cell containing a dilute NaOH solution (50 cm³). The conductivity of the solution was monitored, and the resulting conductivity curve was differentiated to provide a distribution curve of CO₂ desorbed from adsorbent.

3. Results

3.1. Characterization of REOs

Fig. 1 shows the XRD patterns of REOs and $Sc_{2-x}Yb_xO_3$ calcined at 800 °C. REO samples had different crystal structures with A-, B-, C-, and C_F-type [21,22]. Light REOs such as La_2O_3 , Pr_6O_{11} , and Nd_2O_3 had a hexagonal structure of A-type. Other light REOs such as Sm_2O_3 had a monoclinic structure of B-type. On the other hand, heavy REOs such as Gd_2O_3 , Tb_4O_7 , Dy_2O_3 , Ho_2O_3 , Y_2O_3 , Er_2O_3 , Tm_2O_3 , Yb_2O_3 , Lu_2O_3 , Sc_2O_3 , and $Sc_{2-x}Yb_xO_3$ (x=0.5, 1.0, and 1.5) [18] had a cubic bixbyite structure of C-type. Eu_2O_3 had an unknown phase, and CeO_2 had a cubic fluorite structure of C_F -type. The crystal phases of REOs and $Sc_{2-x}Yb_xO_3$ as well as their SA are summarized in Table 1.

Fig. 2 shows TPD profiles of CO_2 adsorbed on the REOs. Several desorption peaks of CO_2 from light REOs, such as La_2O_3 , CeO_2 , Download English Version:

https://daneshyari.com/en/article/39093

Download Persian Version:

https://daneshyari.com/article/39093

Daneshyari.com