
Fuzzy Sets and Systems 160 (2009) 554–568
www.elsevier.com/locate/fss

Computationally efficient active rule detection method:
Algorithm and architecture

Mahdi Hamzeha, Hamid Reza Mahdiania,b,∗, Ahmad Saghafia,
Sied Mehdi Fakhraiea, Caro Lucasc,d

aSilicon Intelligence and VLSI Signal Processing Laboratory, School of Electrical and Computer Engineering,
University of Tehran, North Kargar Ave., Tehran 14395-515, Iran

bComputer and Electronics Department, Sh. Abbaspour University of Technology, Iran
cCenter of Excellence for Control and Intelligent Processing, University of Tehran, Iran

dSchool of Cognitive Science, IPM, Iran

Received 15 September 2007; received in revised form 22 April 2008; accepted 1 May 2008
Available online 21 May 2008

Abstract

In this paper, a new active rule detection algorithm is proposed which is efficiently implemented in dedicated fuzzy processors.
Here, its advantages are analytically attested. A novel realization architecture is proposed that has higher performance and uses
lower hardware resources in comparison to the other reported architectures. The structure of the proposed active rule detection unit
is scalable in terms of the number of inputs, the number of membership functions and their bit widths. The proposed architecture is
flexible in term of membership function shape as well.
© 2008 Elsevier B.V. All rights reserved.

Keywords: Active rule detection; Algorithm; Architecture; Fuzzy processor; Scalable

1. Introduction

Fuzzy logic [42,43] is used in an increasing number of applications. These applications include process control
[25], decision making support systems [27] and signal processing [8]. The time constraints of various fuzzy systems
may differ considerably according to the demands of different applications. In washing-machine controllers and auto
focus imaging devices, for instance, the required inference speeds are quite low, while in real-time applications, they
are extremely high. Among them, we can mention of the applications reported in [15,26,5,18,24,32]. There are some
successful efforts to propose simpler algorithms to reduce the amount of computations in fuzzy processes [6] which
result in higher speeds [7] and smaller hardware [28]. However, there is still need for higher performances. Thus,
the designers have to use either high speed special purpose fuzzy hardware [15,2] or very high performance general
purpose processors [34,4,11] and digital signal processors [16,23] to provide the necessary computational power.

∗ Corresponding author at: Silicon Intelligence and VLSI Signal Processing Laboratory, School of Electrical and Computer Engineering, University
of Tehran, Iran. Tel.: +98 912 1907099; fax: +98 21 88006064.

E-mail addresses: mhamzeh@ece.ut.ac.ir (M. Hamzeh), mahdiani@gmail.com, mahdiany@ut.ac.ir (H.R. Mahdiani), saghafi@ieee.org
(A. Saghafi), fakhraie@ut.ac.ir (S.M. Fakhraie), lucas@ipm.ir (C. Lucas).

0165-0114/$ - see front matter © 2008 Elsevier B.V. All rights reserved.
doi:10.1016/j.fss.2008.05.009

http://www.elsevier.com/locate/fss
mailto:mhamzeh@ece.ut.ac.ir
mailto:mahdiani@gmail.com
mailto:mahdiany@ut.ac.ir
mailto:saghafi@ieee.org
mailto:fakhraie@ut.ac.ir
mailto:lucas@ipm.ir


M. Hamzeh et al. / Fuzzy Sets and Systems 160 (2009) 554–568 555

Although using general purpose processor makes the system flexible, they cannot support real-time and computational
intensive applications. Hence, it is unavoidable to use dedicated fuzzy processing engines to implement complicated
systems such as fuzzy image filtering, real-time fuzzy traffic handling of networks, real-time fuzzy task scheduling,
etc. [15,26,5,18,24,32]. To achieve the best performance of these dedicated engines, their critical path blocks should be
efficiently improved and tuned [1]. The active rule selection operation which determines active rules among non-active
ones is on the critical path of any fuzzy processing engine. Even a small improvement on this block results in good
overall benefits as shown in the next sections.

Almost all reported conventional fuzzy processors use a similar processing structure. In these architectures, processing
starts with the fuzzification operation [12,13,21,19,3,14,31]. At this stage, the membership degrees in a subset or all
of the membership functions of the selected input are calculated. Considering different active rule detection units
constitutes the major variation in the reported fuzzy processors. This block is responsible for selecting active rules
among the available rules. Although the active rule selector unit makes the functionality of a hardware faster and more
efficient, there are many processors and controllers that operate without this important block [20,29,10,9]. In spite of
noticeable effect of the rule selection stage on the performance improvement, execution of rule selector unit in most of
the existing processors starts late and after fuzzification [12,13,21,19,3,14,36]. In these architectures, non-zero fuzzified
data is used in rule exploration for activation. This sequence of operations increases the processing latency especially
for the processors in which the fuzzification operation runs sequentially. This delay occurs due to the high degree of
the membership computations for all inputs in all corresponding membership functions. The processing latency can be
significantly reduced by computing the required membership functions only.

In some fuzzy controllers, detecting active rules is accomplished in parallel with fuzzification. Weiwei et al. [40]
proposed a fuzzy processing architecture to control idle speed of a car engine. It uses parallel components for active
rule selection and fuzzification. The architecture of their active rule selector is static and has been designed particularly
for a specific application which cannot be adapted to run other applications. This selection is performed by comparing
the selected input with the most significant bits of a predefined membership function. These parameters are static and
hardwired.

Another architectural restriction of the reported work in [12,13,3,22] is the assumption of having not more than two
overlapped membership functions. This restriction implies losing generality in hardware which restricts the system
design especially when an automatic tool is responsible for rule generation.

The other important disadvantage of the all above described active rule selection architectures is that they are not
scalable in terms of the number of system inputs, membership functions and their bit width. While the scalability is
an important feature that makes the unit reusable for other applications. The lack of flexibility in the shapes of the
membership functions constitute another important limitation of the reported architectures as well.

In some architectures, there is a register file that is used to save some intermediate results which makes it possible to
determine whether a membership function is active or not. In the architecture discussed in [12,13], the controller asserts
enable port of the register file for saving an active membership function. When a non-zero fuzzified data is detected in
the fuzzification unit, the number of active membership functions and their degrees of membership are saved. Then, a
rule association matrix retrieves consequent active rules for use in inference and defuzzification units.

Ascia et al. [3] use two fuzzification units to operate in parallel. This makes the degree of membership computation
two times faster. The rule analyzer unit searches for the rules with non-zero degree of membership in their antecedents.
In that architecture, the rule processing unit retrieves rules from rule memory unit and processes the active rules only,
where they are detected by the rule analyzer block.

Ikeda et al. [21] proposed a processor architecture which saves activation status of all membership functions in a
single long Zero Flag Register instead of a register file. After sequentially calculating the degrees of membership of all
inputs in all corresponding membership functions, the activation status of each rule is then determined using Zero Flag
Register and each bit of the Active Rule Register is used to determine whether its corresponding rule is active or not.

2. A novel active rule detection method

In conventional approaches, all of the corresponding membership functions for every input should be calculated first
which is one of the most time and energy consuming steps. The rule processing or rule activation detection is performed
then according to the achieved degree of membership values. However, there are many non-active membership functions
for each input set, for which there is no need to perform any calculations. This fact have been observed by other



Download English Version:

https://daneshyari.com/en/article/391054

Download Persian Version:

https://daneshyari.com/article/391054

Daneshyari.com

https://daneshyari.com/en/article/391054
https://daneshyari.com/article/391054
https://daneshyari.com

