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a b s t r a c t 

Clustering analysis can facilitate the extraction of implicit patterns in a dataset and elicit 

its natural groupings without requiring prior classification information. For superior clus- 

tering analysis results, a number of distance measures have been proposed. Recently, 

geodesic distance has been widely applied to clustering algorithms for nonlinear group- 

ings. However, geodesic distance is sensitive to noise and hence, geodesic distance-based 

clustering may fail to discover nonlinear clusters in the region of the noise. In this study, 

we propose a density-based geodesic distance that can identify clusters in nonlinear and 

noisy situations. Experiments on various simulation and benchmark datasets are conducted 

to examine the properties of the proposed geodesic distance and to compare its perfor- 

mance with that of existing distance measures. The experimental results confirm that a 

clustering algorithm with the proposed distance measure demonstrated superior perfor- 

mance compared to the competitors; this was especially true when the cluster structures 

in the data were inherently noisy and nonlinearly patterned. 

© 2016 Elsevier Inc. All rights reserved. 

1. Introduction 

Clustering analysis can facilitate the discovery of inherent patterns from large datasets and reveal their natural group- 

ings without using prior classification information. Clustering algorithms systematically partition a dataset by minimizing 

within-group variation and maximizing between-group variation [39,13] . Clustering analysis has been applied in various 

fields including information retrieval [28] , text mining [44] , bioinformatics [4] , marketing management [6] , and process con- 

trol [25,43] . A number of clustering algorithms have been developed [23] . The most prominent of these are k -means [29] , 

PAM (partitioning around medoids) [26,41] , DBSCAN (density-based spatial clustering of applications with noise) [15] , and 

modularity-based clustering [31,32] . 

For more appropriate groupings with these clustering algorithms, determining the proper distance measure is an im- 

portant issue. In general, the majority of the existing clustering algorithms adopt the Euclidean distance and Manhattan 

distance as dissimilarity measures [39,10,22] . Euclidean distance and Manhattan distance are defined as the length of a 

straight line between two observations in Euclidean space and the sum of the differences between two observations in all 

features, respectively. Euclidean and Manhattan distances can be generalized as Minkowski distances. Cosine distance and 

Pearson correlation distance can also be used for clustering analysis. Cosine distance is defined as the cosine of the angle 
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between two observations [38] and the Pearson correlation distance is quantified from a correlation coefficient between two 

observations [21] . These two distance measures fall between [0, 2] regardless of the scale or size of the datasets. They have 

been widely used for microarray clustering and document clustering tasks [11,9,38] . 

Although these distance measures render reasonable results within the situations for which they were designed, no con- 

sensus exists regarding the best all-around performer in real-life situations. Because the majority of these distance measures 

do not consider the shape of the data, they produce unsatisfactory results when the data exhibit nonlinear and (or) local 

patterns such as S -curves and Swiss roll shapes. 

To overcome these limitations, Tenenbaum et al. [40] proposed a geodesic distance to capture intrinsic nonlinear patterns 

(manifold structures) in datasets. The geodesic distance is computed from the neighborhood graph. The weights of the graph 

can be represented by Euclidean distances between neighborhoods and the final geodesic distances between observations 

are defined as the sum of the weights in their shortest path. This geodesic distance can effectively reflect the topological 

structures of the dataset and thus, it can accommodate nonlinear patterns. To utilize this property, several clustering algo- 

rithms have adopt the geodesic distance [37,2,16] . However, the geodesic distance does not consider the density of the data 

and it is vulnerable to noise around the clusters, encountered in many real situations [5,8,3] . 

In addition to the geodesic distance, a path-based distance based on the minimum spanning tree structure was proposed 

to accommodate the nonlinearity [17,18] . However, this distance measure still suffers from the noises around the nonlin- 

ear clusters [7] . To handle the noises, Sajama and Orlitsky [36] proposed a density-based distance that can be calculated 

with the graph structure whose weights are defined by kernel density estimators. However, this method relatively compli- 

cated because it requires determination of several parameters before its full construction including types of kernel functions. 

Moreover, it has been known that the kernel density estimation scheme is vulnerable to high dimensional datasets [5,36] . 

To address the limitations of the existing distance measures, we propose a density-based geodesic distance that is es- 

pecially useful for grouping data exhibiting noisy and nonlinear patterns. The proposed distance measure uses not only 

the neighborhood graph for nonlinearity, but also the density for robustness against the noise. Although the neighborhood 

graph is beneficial for describing the nonlinear patterns, the noise around the clusters prevents the graph structure from ac- 

commodating the nonlinearities. To achieve robustness against this noise, the proposed distance measure employs a density 

calculation scheme that scales the weights in the neighborhood graph. This makes the distance measure between sparse 

observations much greater and vice versa for dense observations. Therefore, the proposed distance measure can produce 

improved performance compared to the original geodesic distance when there is significant noise around the nonlinear 

groups. 

The remaining of this paper is organized as follows. Section 2 introduces the proposed distance measure. 

Section 3 presents a simulation study to demonstrate the advantages of the proposed distance measure over the existing 

measures. Section 4 describes the results of experiments with real data to examine the properties of the proposed distance 

measure and to compare it with existing distance measures. Section 5 contains our concluding remarks. 

2. Density-based geodesic distance 

The proposed density-based geodesic distance is calculated with three main steps: (1) The first is to represent the data 

as a k -nearest neighbor graph. In this graph, all observations are represented as nodes and each observation is connected 

to its neighborhood with an edge. A nearest neighbor graph is widely used to reflect nonlinear patterns in a dataset [37,14] . 

(2) Then, each observation is described as a density. For more effective clustering analysis, we propose a novel density 

measure, computed from the k -nearest neighbor graph and mutual neighborhood relationships between observations. This 

density measure is called a mutual neighborhood-based density coefficient and is used to scale the distances between the 

observations. (3) In the final step, the distance between the observations is computed with the shortest path in the scaled 

graph. All weights are scaled based on the mutual neighborhood-based density coefficient and the distance between the 

observations is defined as a sum of weights in their shortest path. 

2.1. Constructing the k -nearest neighbor graph 

The first step of computing the proposed distance is to represent the data as a neighborhood graph structure. 

Several types of neighborhood graph structures exist, including the ε-neighbor graph and the k -nearest neighbor graph [30] . 

Among these, the k -nearest neighbor graph has been widely used in practice because of its easy construction and effective 

description of local properties [20,40] . Hence, in this study, we use the k -nearest neighbor graph construction scheme. To 

construct the k -nearest neighbor graph, the k -nearest neighborhood of each observation should be defined. The k -nearest 

neighborhoods of observation i , K ( i ), is defined as follows: 

K( x i ) = { x j | ‖ x i − x j ‖ 

2 
≤ d k i } , (1) 

where || x i – x j || 2 denotes the Euclidean distance between x i and x j and d k 
i 

is the k th smallest Euclidean distance from the 

observation x i to the other observations. 

From the definition of the k -nearest neighborhood, a symmetric neighborhood set of observation x i , � ( x i ), can be defined 

as follows: 

�( x i ) = { x j | x j ∈ K( x i ) or x i ∈ K( x j ) } . (2) 
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