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Based on it, we first construct some type-2 t-norms on the fuzzy truth values .#, with the

ordinary partial order < and the partial order C, respectively. The algebraic properties of

these type-2 t-norms are then studied. Moreover, the residual operators of some special

type-2 t-norms on (#,, <) and (Z,, C) are respectively represented. Finally, we briefly dis-
cuss the compositional rule of inference based on type-2 t-norms and their residual
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1. Introduction

Although classical (type-1) fuzzy sets became the “language” of vague propositions, their [0, 1]-valued truth values are
still precise. In order to strengthen the capability of modeling and manipulating inexact information in a logical manner,
the concept of type-2 fuzzy sets was introduced by Zadeh [33], extending the notion of type-1 fuzzy sets. Type-2 fuzzy sets
assign a fuzzy set to each element on its domain. Since type-2 fuzzy sets own more parameters than type-1 fuzzy sets, they
can provide us with more design degrees of freedom in practice. Moreover, type-2 fuzzy sets seem to provide a better frame-
work for the “computing with words” paradigm than classical ones [14,23]. In recent years, type-2 fuzzy sets became
increasingly important in many aspects [3-5,13,22,24,30]. Especially, type-2 fuzzy sets had been successfully employed in
different control applications [2,9,11,15,20,21,35]. It is worth mentioned that the computational complexity of type-2 fuzzy
set operations is the main constraint on application.

It becomes more meaningful to consider what the types of operators are possible for type-2 fuzzy sets in practical appli-
cations. Type-2 t-norm is an indispensable tool modeling the intersection of type-2 fuzzy sets. As a result, it becomes a favor-
ite topic to systematically study of type-2 t-norms from the mathematical point of view. It is well known that some type-2
t-norms can be derived directly from Zadeh’ extension principle. Many researchers have been studied extended t-norms in
accord ance with Zadeh’ extension principle. For example, Mizumoto and Tanaka firstly studied the set-theoretic operations
and the algebraic structures of type-2 fuzzy sets under the operations Ar, where T is one of the four basic t-norms on [0, 1]
[25,26]. Karnik and Mendel provided some general formulas for the extended t-norms and t-conorms on finite type-2 fuzzy
sets which have discrete domains [16]. Gera and Dombi represented some computationally pointwise formulas for extended
t-norms and t-conorms on type-2 fuzzy sets [7]. Starczewski gave expressions of some extended t-norms for fuzzy truth
intervals or fuzzy truth numbers [28]. Hu and Kwong discussed properties of t-norm extension operations of general binary
operation for fuzzy true values on a linearly ordered set, with a unit interval and a real number set as special cases [12].
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Classical t-norm is a binary operation defined on the linearly ordered set [0, 1]. As an extension of classical t-norm, type-2
t-norm is defined on fuzzy truth values of type-2 fuzzy sets, which is the set of all functions from [0, 1] into itself. Due to the
close connection between order sets and fuzzy sets, we can study type-2 t-norms from the view of partial order sets. Unlike
[0, 1], the fuzzy truth values of type-2 fuzzy sets can be equipped with two different partial orders < and C, respectively [31].
And then they become two complete lattices, respectively. This triggers us to treat type-2 t-norms as triangular norms on a
general partial order set. Moreover, a left continuous t-norm plays an essential role in fuzzy set theory. Therefore, we mainly
investigate the continuity of extended t-norms in accordance with Zadeh'’s extension principle and their residual operators
on the partial order sets (#,,<) and (#,,C) in this paper. Having this in mind, this paper is organized as follows. In
Section 2, we give some definitions of basic notions and notations. Section 3 constructs some type-2 t-norms, their residual
operators and t-conorms on the partial order set (#,, <). In Section 4, some algebraic properties of type-2 t-norms on the
partial order sets (#,,C) are investigated, and then the residual operators of some special type-2 t-norms on (#,,C) are
shown. Section 5 discusses the compositional rule of inference based on left continuous type-2 t-norms and their residual
operators.

2. Preliminaries

First, we briefly summarize some basic concepts and results that are needed for further treatment. Let X and Y be two
universes of discourse and Map(X,Y) denotes the set of all mappings from X to Y. A type-1 fuzzy set A can be regarded
as an element of Map(X, [0, 1]). The family of all fuzzy sets on X is denoted by # (X). Common operations on # (X) are N
(intersection), U (union), and ¢ (complement) given pointwise by

ANB(x) = min{A(x),B(x)},
AUB(x) = max{A(x),B(x)}, (1)
A'(x) = (Ax))',

and the two nullary operations are given by ()(x) = 0 and X(x) = 1 for all x € X. It is well known that (#(X),Nn,U,c,0,X) is a
bounded distributive lattice with an involutive c that satisfies De Morgan’s laws, that is, it is De Morgan algebra. However, it
should be noted that min, max and c are not the only one type of operation for complement, union, or intersection. More
general, t-norms, t-conorms and negation are used to be qualified as these operations [16].

Let J be a linearly ordered set with an involutive negation N. If for any A CJ it holds infA € J and supA € J, then ] is called
complete. If J is bounded, then the smallest and greatest elements in J are written as 0 and 1, respectively. In this case, the
algebra is written as (J, V, A, N, 0, 1), which was discussed in [31]. In this paper, we consider the case which (J,v,A,N,0,1) is
De Morgan algebra, that is, it is a bounded distributive complete lattice satisfying the De Morgan laws.

Definition 2.1 (/25,26]). A type-2 fuzzy set A in a universe X is characterized by a fuzzy membership function A as
A:X — Map(J,[0,1]) (2)
with the value A (x) being called a fuzzy grade. A fuzzy grade E(x) can be represented by

A(x) = f,(u), (3)

where f, is a membership function for the fuzzy grade A(x) which is defined as fv:J—[0,1].
The family of all type-2 fuzzy sets on X is denoted by #,(X). The algebraic operations in #,(X) are determined from
Zadeh'’s principle of extension.

Definition 2.2 (/25,26]). Let A, B € 7,(X), i.e., A(x) = {f,|x € X,f, : ] — [0,1]} and B(x) = {g,|x € X, g, : ] — [0, 1]}. The mem-
bership grades for union (U ) intersection (M) and complement (-) of A and B are defined as follows:

(AUB)( \/(f

(AN B)( \/(f (4)
:yﬂw:

~ 1 x=0 ~ 1 x=1

O(x):{o X#0’ l(X):{o X1’

where V, A and 7 are maximum, minimum and involutive negation on [0, 1], respectively.

Definition 2.3 [31]. Let A, B € %, (X). Two partial orders are defined as follows:
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