Contents lists available at ScienceDirect

Information Sciences

journal homepage: www.elsevier.com/locate/ins

Type-2 triangular norms and their residual operators

Li Dechao*

School of Mathematics, Physics and Information Science, Zhejiang Ocean University, Zhoushan 316022, China Key Laboratory of Oceanographic Big Data Mining and Application of Zhejiang Province, Zhoushan 316022, China

ARTICLE INFO

Article history: Received 8 November 2014 Received in revised form 28 April 2015 Accepted 2 May 2015 Available online 7 May 2015

Keywords: Type-2 fuzzy sets Type-2 t-norms Residuation Compositional rule of inference

ABSTRACT

In this paper, we mainly investigate *T*-extension operations of any *t*-norms and *t*-conorms on type-2 fuzzy sets' truth values \mathscr{F}_2 (a set of all functions defined from [0, 1] into itself). Based on it, we first construct some type-2 *t*-norms on the fuzzy truth values \mathscr{F}_2 with the ordinary partial order \leq and the partial order \sqsubseteq , respectively. The algebraic properties of these type-2 *t*-norms are then studied. Moreover, the residual operators of some special type-2 *t*-norms on (\mathscr{F}_2, \leq) and ($\mathscr{F}_2, \sqsubseteq$) are respectively represented. Finally, we briefly discuss the compositional rule of inference based on type-2 *t*-norms and their residual operators.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Although classical (type-1) fuzzy sets became the "language" of vague propositions, their [0, 1]-valued truth values are still precise. In order to strengthen the capability of modeling and manipulating inexact information in a logical manner, the concept of type-2 fuzzy sets was introduced by Zadeh [33], extending the notion of type-1 fuzzy sets. Type-2 fuzzy sets assign a fuzzy set to each element on its domain. Since type-2 fuzzy sets own more parameters than type-1 fuzzy sets, they can provide us with more design degrees of freedom in practice. Moreover, type-2 fuzzy sets seem to provide a better framework for the "computing with words" paradigm than classical ones [14,23]. In recent years, type-2 fuzzy sets became increasingly important in many aspects [3–5,13,22,24,30]. Especially, type-2 fuzzy sets had been successfully employed in different control applications [2,9,11,15,20,21,35]. It is worth mentioned that the computational complexity of type-2 fuzzy set operations is the main constraint on application.

It becomes more meaningful to consider what the types of operators are possible for type-2 fuzzy sets in practical applications. Type-2 *t*-norm is an indispensable tool modeling the intersection of type-2 fuzzy sets. As a result, it becomes a favorite topic to systematically study of type-2 *t*-norms from the mathematical point of view. It is well known that some type-2 *t*-norms can be derived directly from Zadeh' extension principle. Many researchers have been studied extended *t*-norms in accord ance with Zadeh' extension principle. For example, Mizumoto and Tanaka firstly studied the set-theoretic operations and the algebraic structures of type-2 fuzzy sets under the operations \wedge_T , where *T* is one of the four basic *t*-norms on [0, 1] [25,26]. Karnik and Mendel provided some general formulas for the extended *t*-norms and *t*-conorms on finite type-2 fuzzy sets which have discrete domains [16]. Gera and Dombi represented some computationally pointwise formulas for extended *t*-norms on type-2 fuzzy sets [7]. Starczewski gave expressions of some extended *t*-norms for fuzzy truth intervals or fuzzy truth numbers [28]. Hu and Kwong discussed properties of *t*-norm extension operations of general binary operation for fuzzy true values on a linearly ordered set, with a unit interval and a real number set as special cases [12].

* Address: School of Mathematics, Physics and Information Science, Zhejiang Ocean University, Zhoushan 316022, China. *E-mail address*: dch1831@163.com

http://dx.doi.org/10.1016/j.ins.2015.05.003 0020-0255/© 2015 Elsevier Inc. All rights reserved.

Classical *t*-norm is a binary operation defined on the linearly ordered set [0, 1]. As an extension of classical *t*-norm, type-2 *t*-norm is defined on fuzzy truth values of type-2 fuzzy sets, which is the set of all functions from [0, 1] into itself. Due to the close connection between order sets and fuzzy sets, we can study type-2 *t*-norms from the view of partial order sets. Unlike [0, 1], the fuzzy truth values of type-2 fuzzy sets can be equipped with two different partial orders \leq and \Box , respectively [31]. And then they become two complete lattices, respectively. This triggers us to treat type-2 *t*-norms as triangular norms on a general partial order set. Moreover, a left continuous *t*-norm plays an essential role in fuzzy set theory. Therefore, we mainly investigate the continuity of extended *t*-norms in accordance with Zadeh's extension principle and their residual operators on the partial order sets (\mathscr{F}_2 , \leq) and (\mathscr{F}_2 , \subseteq) in this paper. Having this in mind, this paper is organized as follows. In Section 2, we give some definitions of basic notions and notations. Section 3 constructs some type-2 *t*-norms on the partial order sets (\mathscr{F}_2 , \leq) are investigated, and then the residual operators of some special type-2 *t*-norms on (\mathscr{F}_2 , \subseteq) are shown. Section 5 discusses the compositional rule of inference based on left continuous type-2 *t*-norms and their residual operators.

2. Preliminaries

First, we briefly summarize some basic concepts and results that are needed for further treatment. Let *X* and *Y* be two universes of discourse and Map(X, Y) denotes the set of all mappings from *X* to *Y*. A type-1 fuzzy set *A* can be regarded as an element of Map(X, [0, 1]). The family of all fuzzy sets on *X* is denoted by $\mathscr{F}(X)$. Common operations on $\mathscr{F}(X)$ are \cap (intersection), \cup (union), and *c* (complement) given pointwise by

$$A \cap B(x) = \min\{A(x), B(x)\},\A \cup B(x) = \max\{A(x), B(x)\},\A^{c}(x) = (A(x))',$$
(1)

and the two nullary operations are given by $\emptyset(x) = 0$ and X(x) = 1 for all $x \in X$. It is well known that $(\mathscr{F}(X), \cap, \cup, c, \emptyset, X)$ is a bounded distributive lattice with an involutive *c* that satisfies De Morgan's laws, that is, it is De Morgan algebra. However, it should be noted that min, max and *c* are not the only one type of operation for complement, union, or intersection. More general, *t*-norms, *t*-conorms and negation are used to be qualified as these operations [16].

Let *J* be a linearly ordered set with an involutive negation *N*. If for any $A \subseteq J$ it holds inf $A \in J$ and sup $A \in J$, then *J* is called complete. If *J* is bounded, then the smallest and greatest elements in *J* are written as 0 and 1, respectively. In this case, the algebra is written as $(J, \lor, \land, N, 0, 1)$, which was discussed in [31]. In this paper, we consider the case which $(J, \lor, \land, N, 0, 1)$ is De Morgan algebra, that is, it is a bounded distributive complete lattice satisfying the De Morgan laws.

Definition 2.1 ([25,26]). A type-2 fuzzy set \tilde{A} in a universe X is characterized by a fuzzy membership function A as

$$A: X \to Map(J, [0, 1]) \tag{2}$$

with the value $\widetilde{A}(x)$ being called a fuzzy grade. A fuzzy grade $\widetilde{A}(x)$ can be represented by

$$A(\mathbf{x}) = f_{\mathbf{x}}(\mathbf{u}),\tag{3}$$

where f_x is a membership function for the fuzzy grade $\widetilde{A}(x)$ which is defined as $f_x : J \to [0, 1]$.

The family of all type-2 fuzzy sets on X is denoted by $\mathscr{F}_2(X)$. The algebraic operations in $\mathscr{F}_2(X)$ are determined from Zadeh's principle of extension.

Definition 2.2 ([25,26]). Let $\widetilde{A}, \widetilde{B} \in \mathscr{F}_2(X)$, i.e., $\widetilde{A}(x) = \{f_x | x \in X, f_x : J \to [0,1]\}$ and $\widetilde{B}(x) = \{g_x | x \in X, g_x : J \to [0,1]\}$. The membership grades for union (\sqcup), intersection (\sqcap) and complement (\neg) of \widetilde{A} and \widetilde{B} are defined as follows:

$$(\widetilde{A} \sqcup \widetilde{B})(x) = \bigvee_{x=u \lor v} (f(u) \land g(v)),$$

$$(\widetilde{A} \sqcap \widetilde{B})(x) = \bigvee_{x=u \land v} (f(u) \land g(v)),$$

$$(\neg \widetilde{A})(x) = \bigvee_{x=u'} f(u) = f(x'),$$

$$\widetilde{0}(x) = \begin{cases} 1 & x = 0 \\ 0 & x \neq 0 \end{cases}, \quad \widetilde{1}(x) = \begin{cases} 1 & x = 1 \\ 0 & x \neq 1 \end{cases},$$
(4)

where \lor , \land and \prime are maximum, minimum and involutive negation on [0, 1], respectively.

Definition 2.3 [31]. Let $\widetilde{A}, \widetilde{B} \in \mathscr{F}_2(X)$. Two partial orders are defined as follows:

Download English Version:

https://daneshyari.com/en/article/391509

Download Persian Version:

https://daneshyari.com/article/391509

Daneshyari.com