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a b s t r a c t

Three major sources of complexity in many real-world problems are size, variable
interaction, and interdependence of the subcomponents of a problem. With the rapid
growth in the size of businesses, the demand for solving large-scale complex problems will
continue to grow. In this paper, we propose several major design features that need to be
incorporated into large-scale optimization benchmark suites in order to better resemble
the features of real-world problems. Non-uniform subcomponent sizes, imbalance
between the contribution of various subcomponents of a problem, and the interaction
between subcomponents by means of overlapping subcomponents are among these
features. The proposed features are designed with the aim of closing the gap between
the theory and practice of evolutionary techniques for solving large-scale continuous opti-
mization problems. The general guidelines proposed in this paper can be used to design
and construct various benchmark suites to meet different needs. The IEEE CEC’2013
large-scale global optimization benchmark suite [29] is one such implementation. The
paper also contains a brief discussion on how the CEC’2013 benchmarks can be extended
or modified for various purposes. Finally, a preliminary comparative study is conducted
to showcase the performance of several state-of-the-art algorithms on the CEC’2013
large-scale benchmark problems.

� 2015 Elsevier Inc. All rights reserved.

1. Introduction

Numerous metaheuristic algorithms have been successfully applied to many optimization problems [3,4,9,14,15,25–
27,34,48,56]. However, their performance deteriorates rapidly as the dimensionality of the problem increases [5,31]. There
are many real-world problems that exhibit such large-scale property [13,32,54,68,59], and the number of such large-scale
optimization problems will continue to grow as we advance in science and technology.

Several factors make large-scale problems exceedingly difficult [62]. Firstly, the search space of a problem grows expo-
nentially as the number of decision variables increases. Secondly, the properties of the search space may change as the num-
ber of dimensions increases. For example, the Rosenbrock function is a unimodal function in two dimensions, but it turns
into a multi-modal function when the number of dimensions increases [51]. Rosenbrock’s function is a well-known test
function in numerical optimization and is characterized by its parabolic narrow valley where its global optimum resides.
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Thirdly, the evaluation of large-scale problems is usually expensive. This is often the case in many real-world problems such
as gas turbine stator blades [22], multidisciplinary design optimization [55], and target shape design optimization [37].

Another factor that contributes to the difficulty of large-scale problems is the interaction between variables. Two vari-
ables interact if they cannot be optimized independently to find the global optimum of an objective function. Variable inter-
action is commonly referred to as non-separability in continuous optimization literature. In genetic algorithms literature, this
phenomenon is commonly known as epistasis or gene interaction [11,8]. In an extreme case where there is no interaction
between any pair of the decision variables, a large-scale problem can be solved by optimizing each of the decision variables
independently. The other extreme is when all of the decision variables interact with each other and all of them should be
optimized together. However, most of the real-world problems fall in between these two extreme cases [60]. In such prob-
lems, usually a subset of the decision variables interact with each other, forming several clusters of interacting variables.

Other general factors that contribute to the difficulty of a problem are noise, modelling issues, constraints, and interaction
between subcomponents [34]. However, constrained optimization, optimization of noisy functions, and modelling are
beyond the scope of this study. For constrained optimization, it suffices to mention that the method of Augmented Lagrang-
ian [6] is a widely-used technique to convert a constrained optimization into an unconstrained one. Unlike the method of
Lagrange multipliers [6], which requires the calculation of the first order derivative of the Lagrangian, Augmented Lagrangian
does not require calculation of derivatives.

The IEEE CEC’2010 benchmark suite [57] consists of large-scale modular problems with no interdependence between var-
ious subcomponents of a given problem. It is argued that subcomponent interaction is commonplace in many real-world
problems [33]. For example, each component of a supply-chain problem is called a silo, and most supply-chain problems
are multi-silo problems with interaction between silos [35]. In an attempt to better represent this class of real-world prob-
lems, in this paper we propose a method for creating interaction between subcomponents.

The modular nature of many real-world problems makes a divide-and-conquer approach appealing for solving large-scale
optimization problems. In the field of evolutionary optimization, these divide-and-conquer approaches are commonly
known as decomposition methods [10,17,16]. Some algorithms, such as estimation of distribution algorithms (EDAs)
[36,43–46], perform an implicit decomposition by approximating a set of joint probability distributions to represent each
interaction group. Other methods such as cooperative co-evolution (CC) [47] explicitly subdivide a large-scale problem into
a set of smaller subproblems [61]. Cooperative co-evolutionary methods in particular have gained popularity in recent years
in the context of large-scale optimization [7,30,31,39,40,65,64]. When the problem is very large, it is prohibitive to optimize
all the decision variables at once. Therefore, it is desirable to divide a large-scale complex problem into a set of smaller prob-
lems. However, in the presence of interaction between subcomponents, there is no unique optimal decomposition. It has
been suggested recently that cooperative co-evolution is a promising framework for solving complex multi-silo problems
[33]. A CC framework is advantageous for two major reasons. Firstly, it can potentially exploit the modular nature of a prob-
lem by optimizing various subcomponents separately. Secondly, if some of the subcomponents interact, CC’s collaborative
scheme for evaluating the potential solutions allows information sharing between subcomponents.

The IEEE CEC’2010 benchmark suite [57] was designed with the aim of providing a suitable evaluation platform for testing
and comparing large-scale optimization algorithms. To that end, the CEC’2010 benchmark suite is successful in representing
the modular nature of some real-world problems, and building a scalable set of benchmark functions in order to promote
research in the field of large-scale global optimization. However, recent advances in this area signal the need to revise
and extend the existing benchmark suite. For example, the differential grouping algorithm [38] can now detect the grouping
structure of the CEC’2010 benchmark problems with 100% accuracy for most of the functions in the test suite. The aim of this
paper is to build upon the ideas originally proposed in the CEC’2010 benchmark suite and propose a set of guidelines for
designing large-scale benchmark problems in order to better represent the features of a wider range of real-world problems,
as well as posing some new challenges to the existing algorithms, especially to decomposition-based algorithms. As a result,
the CEC’2013 benchmark suite for large-scale optimization has recently been proposed [29]. This paper will focus on pre-
senting the following three key features that were included in the new CEC’2013 benchmark suite:

� Non-uniform subcomponent sizes (Section 5.1).
� Imbalance in the contribution of subcomponents (Section 5.2).
� Functions with overlapping subcomponents (Section 5.3).

In this paper, we explain how each of these features poses a challenge to a class of optimization algorithms. Where appro-
priate, an empirical approach is employed to demonstrate the effect of these features on several selected state-of-the-art
metaheuristic optimization algorithms (see Section 3.2).

The organization of the remainder of this paper is as follows: Section 2 gives a brief outline of the existing large-scale
benchmark suites and outlines the need for new benchmarks. Section 3 contains the required definitions and explanations
of the algorithms used in this paper. Section 4 outlines the mathematical definitions of various categories of functions. In
Section 5, the newly proposed features such as non-uniform subcomponent size, imbalance, and overlapping functions
are explained, and relevant experimental results are given where appropriate. Section 6 shows how the proposed
CEC’2013 benchmark suite can be extended and used for various types of research. Section 7 contains a brief comparative
study on the performance of several state-of-the-art algorithms on the CEC’2013 benchmark suite. Finally, Section 8
concludes the paper and gives a list of open research questions.

420 M.N. Omidvar et al. / Information Sciences 316 (2015) 419–436



Download English Version:

https://daneshyari.com/en/article/391539

Download Persian Version:

https://daneshyari.com/article/391539

Daneshyari.com

https://daneshyari.com/en/article/391539
https://daneshyari.com/article/391539
https://daneshyari.com

