
Fast density-based clustering through dataset partition
using graphics processing units q,qq

Woong-Kee Loh a, Hwanjo Yu b,⇑
a Department of Software, Gachon University, Republic of Korea
b Department of Computer Science & Engineering, POSTECH, Republic of Korea

a r t i c l e i n f o

Article history:
Received 26 July 2013
Received in revised form 26 August 2014
Accepted 6 October 2014
Available online 19 October 2014

Keywords:
Density-based clustering
Graphics processing unit
Massively parallel algorithm
Dataset partition
On-chip shared memory

a b s t r a c t

Graphics processing units (GPUs) have been utilized to improve the processing speed of
many conventional data mining algorithms. DBSCAN, a popular clustering algorithm that
has been often used in practice, was extended to execute on a GPU. However, existing
GPU-based DBSCAN extensions still have impediments in that the distances from all
objects need to be repeatedly computed to find the neighbor objects and the objects and
intermediate clustering results are stored in costly off-chip memory of the GPU. This paper
proposes CudaSCAN, a novel algorithm that improves the efficiency of DBSCAN by making
better use of the GPU. CudaSCAN consists of three phases: (1) partitioning the entire data-
set into sub-regions of size of an integer multiple of the on-chip shared memory size in the
GPU; (2) local clustering within sub-regions in parallel; and (3) merging the local clustering
results. CudaSCAN allows an overlap between sub-regions to ensure independent, parallel
local clustering in each sub-region, which in turn enables for objects and/or intermediate
results to be stored in on-chip shared memory that has an access cost a few hundred times
cheaper than that of off-chip global memory. The independence also enables for merging to
be parallelized. This paper proves the correctness of CudaSCAN, and according to our
extensive experiments, CudaSCAN outperforms CUDA-DClust, a previous GPU-based
DBSCAN extension, by up to 163.6 times.

� 2014 Elsevier Inc. All rights reserved.

1. Introduction

A graphics processing unit (GPU) is a specialized processor that receives display data from the CPU, creates 30–60 frames
per second, and then outputs the result to the computer display. It is usually a chip that is independent of the CPU, and it has
a dedicated memory. In recent years, the GPU has been considered to be a high-performance vector processor that consists of
a number of simple cores which conduct elementary operations like arithmetic and logic units (ALUs). Each parallel core
produces output images for different portions in the same frame. Due to rapid improvements in modern GPU technologies,
various attempts have been made to apply GPUs not only to advanced display but also to general problems or applications.
The GPU is used as a massively parallel computer that uses a number of cores in which the instructions for graphics and

http://dx.doi.org/10.1016/j.ins.2014.10.023
0020-0255/� 2014 Elsevier Inc. All rights reserved.

q This research was supported by the Basic Science Research Program through the National Research Foundation (NRF) funded by the Ministry of
Education, Science and Technology (MEST) (No. 2010-0025001).
qq This work was supported by Mid-career Researcher Program through NRF Grant funded by the MEST (No. NRF-2013R1A2A2A01067425).
⇑ Corresponding author.

E-mail addresses: wkloh2@gachon.ac.kr (W.-K. Loh), hwanjoyu@postech.ac.kr (H. Yu).

Information Sciences 308 (2015) 94–112

Contents lists available at ScienceDirect

Information Sciences

journal homepage: www.elsevier .com/locate / ins

http://crossmark.crossref.org/dialog/?doi=10.1016/j.ins.2014.10.023&domain=pdf
http://dx.doi.org/10.1016/j.ins.2014.10.023
mailto:wkloh2@gachon.ac.kr
mailto:hwanjoyu@postech.ac.kr
http://dx.doi.org/10.1016/j.ins.2014.10.023
http://www.sciencedirect.com/science/journal/00200255
http://www.elsevier.com/locate/ins


general applications can be executed. Recent studies have introduced various techniques to improve the processing speed of
conventional data mining algorithms such as Apriori, k-means, DBSCAN, and support vector machine (SVM) using a GPU
[1,4,6,9,16,24,27]. The GPU-accelerated data mining algorithms have achieved speed-up of up to two orders of magnitude
better than the previous sequential ones. As the number of mining objects keeps increasing dramatically, faster GPU
algorithms are also gaining prominence.

Clustering is a partitioning task that divides objects in a dataset into several groups (or clusters) without any prior knowl-
edge, each cluster comprising objects with similar features. Clustering is a popular data mining task, and it has many appli-
cations in various domains, including physics, biology, social sciences, and marketing. Specifically, density-based clustering
has been popularly used in practice; it creates clusters of objects in dense areas and divides the clusters in sparse areas. It has
the following advantages over other clustering algorithms [12,13,19]. First, density-based clustering detects clusters of any
shape, unlike most other methods that find clusters with convex shapes. Second, it efficiently filters out noises. Third, it does
not require a pre-defined number of clusters, unlike k-means [12]. Fourth, its clustering results are not sensitive to the order
of objects in the dataset. Fifth, it can handle cases where only the distances (differences) between the objects are given
instead of their actual positions.

Representative density-based clustering algorithms are DBSCAN [8], OPTICS [2], and DENCLUE [15]. DBSCAN has been
adopted for a few real-world applications that deal with very large datasets. Edla and Jana [7] used DBSCAN to cluster genes
with similar expression levels, and each gene expression level was measured by the microarray. Clustering the enormous genes
helps discover gene functions and regulatory mechanisms [7]. He et al. [13] analyzed 1.9 billion GPS location records obtained
from about 6000 taxis for two years in Shanghai. They used DBSCAN to identify hot regions within the city and to distinguish
erroneous GPS records. The analysis is helpful in designing city traffic policies and in detecting drivers with faulty behavior.

Various methods have been developed to improve the efficiency of the clustering algorithms [1,4,5,14,21,26]. In partic-
ular, CUDA-DClust [4] used the GPU to improve the efficiency of DBSCAN by up to 15 times relative to the sequential,
CPU-based method. CUDA-DClust⁄ was also proposed [4] to further improve the speed of CUDA-DClust by up to 11.9 times
using a simple index structure, even though its performance should be highly dependent on the object distribution in the
datasets. CUDA-DClust creates multiple sub-clusters simultaneously in order to maximize the utility of GPU cores. However,
it needs to compute the distances among all objects in the dataset to find the neighbor objects, and the objects and compu-
tation results are stored in costly off-chip memory of the GPU. CUDA-DClust⁄ greatly reduces the number of distance com-
putations using an index, but it needs to first construct the index from the dataset before clustering can commence, and it
does not effectively utilize the large quantities of GPU cores while traversing the index. It also still has to store the objects
and the intermediate clustering results in the costly off-chip memory.

In this paper, we propose CudaSCAN (CUDA-based DBSCAN), a novel algorithm that improves the efficiency of DBSCAN
using the GPU. CudaSCAN first divides the entire dataset into sub-regions with sizes that are not larger than pre-specified
S. Then, local clustering within the sub-regions is performed in parallel. Clustering within each sub-region substantially
reduces the computational cost, as the distances among the objects need to be computed only within the sub-region whereas
DBSCAN needs to compute the distances among all the objects in the entire dataset. Finally, the local clustering results are
merged in order to construct the final clustering result. We prove that the final clustering result is equal to that of DBSCAN.
CudaSCAN further improves the execution speed by storing the objects and/or the intermediate local clustering results in the
fast on-chip shared memory in the GPU.

Our extensive experiments reveal that CudaSCAN outperformed CUDA-DClust and CUDA-DClust⁄. CudaSCAN produces
the clustering results by up to 163.6 times faster than CUDA-DClust and 2.83 times faster than CUDA-DClust⁄. CudaSCAN
can be easily extended to parallel programming environments using multicore CPUs and distributed computing environ-
ments using the MapReduce framework.

This paper is organized as follows. In Section 2, we briefly explain the structure of Nvidia GPUs. We present existing den-
sity-based clustering methods along with their strengths and weaknesses in Section 3. In Section 4, we give a detailed
account of the CudaSCAN algorithm, and we present the experimental results for CudaSCAN in Section 5. Finally, we
conclude our study in Section 6.

2. Graphics processing units

Nvidia announced the 8800 series, codenamed G80, in 2006, and this series had a fundamentally different architecture
from that of previous GPUs. Since then, Nvidia has released more sophisticated architectures such as Tesla, Fermi, and Kepler
[17]. Fig. 1 shows an overview of Nvidia’s GPU architecture. A GPU chip has several multi-processors (MPs),1 and each MP
consists of many stream processors (SPs).2 An SP is an execution unit that has a simple structure, like an ALU in a CPU. Each
MP performs a mutually independent task, and every SP contained in an MP executes the same operation for different data.
Since modern GPUs consist of hundreds or thousands of SPs, a GPU can be treated as a massively parallel computer.

Nvidia’s GPU has a complex memory structure to maximize the processing speed of applications. As Fig. 1 shows, each SP
has its own private register that stores variables and temporal data for executing instructions on the SP. An SP cannot access

1 An MP is also called a streaming multi-processor (SM).
2 An SP is also called a core, but it has much simpler structure than CPU cores.

W.-K. Loh, H. Yu / Information Sciences 308 (2015) 94–112 95



Download	English	Version:

https://daneshyari.com/en/article/391569

Download	Persian	Version:

https://daneshyari.com/article/391569

Daneshyari.com

https://daneshyari.com/en/article/391569
https://daneshyari.com/article/391569
https://daneshyari.com/

