Information Sciences 303 (2015) 1-14

Contents lists available at ScienceDirect =
INFORMATION
SCIENCES
Information Sciences e

journal homepage: www.elsevier.com/locate/ins o

Regression analysis of locality preserving projections via sparse @ CrossMark
penalty

Zhonglong Zheng *"*, Xiaogiao Huang?, Zhongyu Chen?, Xiaowei He ¢, Huawen Liu?,

Jie Yang”

2 Department of Computer Science, Zhejiang Normal University, China
b Department of Computer Science, University of California, Merced, USA

ARTICLE INFO ABSTRACT
Article history: Recent studies have shown that linear subspace algorithms, such as Principal Component
Received 5 September 2013 Analysis, Linear Discriminant Analysis and Locality Preserving Projections, have attracted

Received in revised form 31 October 2014
Accepted 4 January 2015
Available online 20 January 2015

tremendous attention in many fields of information processing. However, the projection
results obtained by these algorithms are linear combination of the original features, which
is difficult to be interpreted psychologically and physiologically. Motivated by Compressive
Sensing theory, we formulate the generalized eigenvalue problem under CS framework,
Subspace learning which t.hen allf)ws. us to apply a sparsity Penalty and minimization.procedure.to loca.lity
Locality preserving projections preserving projections. The Proposed algorlthnﬁl is .callefl sparse locality preserving projec-
Sparse penalty tions, which performs locality preserving projections in the lasso regression framework
Regression analysis that dimensionality reduction, feature selection and classification are merged into one
analysis. The method is also extended to its regularized form to improve its generalization.
The proposed algorithm is a combination of locality preserving with sparse penalty.
Additionally, the algorithm can be performed in either supervised or unsupervised tasks.
Experimental results on toy and real data sets show that our methods are effective and
demonstrate much higher performance.
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1. Introduction

During the past decades, problems in which the number of features is much larger than the number of observations have
attracted much interests. Linear dimensionality reduction methods are popular due to the advantages of reasonable motiva-
tion in principle and the simplicity in form.

Principal component analysis (PCA) is an unsupervised linear method of variables technique used in data compression,
classification, and visualization [24]. The essence of PCA is to extract principal components, linear combinations of input
variables that together best account for the variance in a data set. Linear discriminant analysis (LDA) is a favored tool for
supervised linear classification in many areas because of its simplicity and robustness [1]. The goal of LDA is to provide
low dimensional projections of data onto the most discriminative directions. Locality preserving projection (LPP) is a recently
proposed method [12], which can be regarded as the linearization of Laplacian EigenMap [2]. When applied to face recog-
nition tasks, LPP is also called LaplacianFaces. The idea behind LPP is that it considers the manifold structure of the data
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set, and preserves the locality of data in the embedding space. LPP has shown the superiority in terms of image indexing and
face recognition.

One of the major disadvantages of these three methods is that the derived projections are linear combinations of all the
original features. Hence the learned results are difficult to interpret. Since the features are likely to be correlated, it is pos-
sible that a subset of these features can be chosen such that the others may not contain substantial additional information
and may be deemed redundant in the presence of this subset of features. In other words, the data in the reduced subspace is
represented as a linear combination of a subset of the features which are the most informative. Recent achievements in psy-
chology and physiology have shown that the representation of objects in human brain may be sparsity-based [22]. Sparse
representations have attracted a great deal of attention in signal processing and information theory [4,21,26,27,29,25].
Recent progress has been made on the surprising effectiveness of the ¢; norm for recovering sparse representations. Zou
et al. proposed sparse principal component analysis by using ¢; penalized regression on conventional PCA [34]. Wu et al. pro-
posed sparse linear discriminant analysis in a similar framework [18,28]. Another sparse variation of discriminant analysis,
called SDA, was presented based on formulating classification as regression [5]. Han et al. extended single-task SDA to the
multi-task scenario with a method called multi-task sparse discriminant analysis MtSDA [11] Qiao et al. proposed sparse
preserving projection method, which aims to preserve the sparse reconstructive relationship of the data by minimizing a
¢, regularization-related objective function [19]. by maximizing the ratio of the ¢;-norm-based locality preserving
between-class dispersion and the ¢;-norm-based locality preserving within-class dispersion, DLPP-¢; was presented and
proved to be more robust to outliers [31].

In this paper, we extend traditional sparse framework to handling the generalized eigenvalue problems, which then
allows us to apply a sparsity penalty and minimization procedure to locality preserving projections. The proposed algorithm
is called sparse locality preserving projections (SpLPP), which is based on lasso regression framework for learning sparse pro-
jections by incorporating ¢; penalty with conventional locality preserving projections. The affinity graph constructed in LPP
encodes both discriminant and geometrical structure in the data [12]. Once the Laplacian matrix is computed, we recast the
generalized eigenvalue problem of LPP in the lasso regression framework to obtain sparse basis functions. The proposed
SpLPP is a combination of locality preserving with sparsity. Additionally, our algorithm can be performed in either super-
vised or unsupervised mode.

The rest of this paper is organized as follows: A short review of LPP is described in Section 2. In Section 3, we provide
SpLPP algorithm in detail, together with the regularized SpLPP. A variety of experimental results are presented in Section
4. Finally, we provide some concluding remarks and suggestions for future work in Section 5.

2. Review of locality preserving projection

Given the original data set {xq,...,x,} € R™, let X = [xy,...,X,], then X is an m x n size matrix. Let S be a similarity matrix
defined on all pairwise data points. LPP can be achieved by optimizing the following minimization problem:

Wope = argmin » (v - ¥))’S;
i
= arg mmin Z(fo,- - Wth)ZSij (1)
i
= argmin wiXLX w
s.t. wXDX'w =1

where L = D — S is the graph Laplacian matrix, and D; = _,;S;; is the local density measure around ;. The symmetry similarity
matrix S; in LPP is defined as:

5, = | Pk =X /0, I - %" <€ 5
i= _ )
0, otherwise

where € > 0 defines the radius of the local neighborhood. Here Sj; is actually heat kernel weight, the proof of such choice and
how to select parameter t can be referred to [2].

The objective function in LPP incurs a heavy penalty if neighboring points x; and x; are mapped far apart. Therefore, the
minimization of the objective function is an attempt to ensure that if x; and x; are “close”, then y; and y; are close as well. The
optimization will ultimately lead to the following generalized eigenvalue problem:

XLX"w = 2XDX"w (3)

Let wo,w;...,w,_, be the solutions of Eq. (3), ordered according to their eigenvalues, 0 < /o < A; <...< /1. Then
W = [wo, W ..., W] is the final transformation projection matrix of LPP.
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